GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2133606
Date: 18/06/2019

Subject Name: Material \& Energy Balance Calculations
 Time: 02:30 PM TO 05:00 PM
 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
03
Q. 1 (a) Define the quantities with SI units: i) Density ii) Pressure iii) Volume.
04
(b) The mass velocity of a gas through a duct is $1000 \mathrm{Kg} / \mathrm{m}^{2} . \mathrm{h}$. Express the velocity in to $\mathrm{lb} / \mathrm{ft}^{2}$.s(c) A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molalsolution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Assuming the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution to be $1.075 \mathrm{~g} / \mathrm{cm}^{3}$,calculate the quantities of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to be taken to prepare these solutions.
Q. 2 (a) Define the following: Molarity , Molality and Normality 03
(b) The average molar mass of a flue gas sample is calculated by two different 04 engineers. One engineer uses the correct molar mass of 28 for N_{2} and determines the average molar mass to be 30.08 , the other engineer, using an incorrect value of 14 , calculates the average molar mass to be 18.74 . (i) Calculate the volume $\%$ of nitrogen in the flue gases, (ii) If the remaining components of the flue gases are CO_{2} and O_{2}, calculate the volume \% each of them
(c) Cracked gas from a petroleum refinery has the following composition by volume, methane 45%, Ethane 10%, ethylene 25%, Propane 7%, Propylene 8%, n-Butane 5%. Find (a) Average mol. Wt. of gas mixture. (b) the composition by weight $\%$ and (c) Specific gravity of the gas mixture at STP.
OR
(c) A weight of 1.10 kg of Carbon dioxide occupies a volume of $0.033 \mathrm{~m}^{3}$ at 300 K . Using the Van der Waals equation of state, calculate the pressure. Data: For CO_{2} gas, take $\mathrm{a}=3.60\left[\left(\mathrm{~m}^{3}\right)^{2} . \mathrm{kPa}\right] /(\mathrm{kmol})^{2}$ and $\mathrm{b}=4.3 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{kmol}$.
Q. 3 (a) State : Dalton's law and Raoult's law 03
(b) The spent acid from a nitrating process contains $33 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 36 \% \mathrm{HNO}_{3}$ and 31% 04water by weight. This acid is to be strengthened by the addition of concentratedsulphuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated nitric acid containing $78 \%$$\mathrm{HNO}_{3}$. The strengthened mixed acid is to contain $40 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $43 \% \mathrm{HNO}_{3}$.Calculate the quantities spent and concentrated acids that should be mixed togetherto yield 1500 kg of the desired mixed acid

are found to contain 18.6% oil, 69% solids, 12.4% moisture (by weight). At the end of the extraction process, cake is separated from hexane-oil mixture. The cake is analyzed to contain 0.8% oil, 87.7% solids and 11.5% moisture (by weight). Find the percent recovery of oil

OR

Q. 3 (a) Define the terms: (a) Conversion (b) Yield (c) Selectivity
(b) 2000 kg of wet solids containing 70% solids by weight are fed to tray dyer where
it is dried by hot air. The product finally obtained is found to contain 1% moisture
by weight, calculate: (1) kg of water removed from wet solids (2) kg of the product
obtained.

(c) \begin{tabular}{l}
A solution contains 50% Benzene, 30% Toluene and 20% Xylene by weight at a

temperature of $100^{\circ} \mathrm{C}$. The vapors are in contact with solution. Calculate the total

pressure and molar $\%$ compositions of liquid and the vapor. The vapor pressures

and the molecular weights are as follows:

Components	vapor pressure at $100^{\circ} \mathrm{C}$	Mol. weight
Benzene	1340 mm Hg	78
Toluene	560 mm Hg	92
Xylene	210 mm Hg	106

\end{tabular}

Q. 4 (a) Explain: Limiting reactant, Excess reactant and Percent excess reactant
(b) Ammonia reacts with sulphuric acid giving ammonium sulphate:
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
a) $20 \mathrm{~m}^{3}$ of ammonia at 1.2 bar and 300 k reacts with 40 kg of sulphuric acid. Which one is the excess reactant and what is the percent excess?
b) How much ammonium sulphate is obtained
(c) 1 kg nitrogen is mixed with $3.5 \mathrm{~m}^{3}$ of hydrogen at 300 K and 101.3 kPa and sent to the ammonia converter. The product leaving the converter analysed 13.7% ammonia, 70.32 \% hydrogen and 15.98 \% nitrogen.
(a) Identity the limiting reactant.
(b) What is the present excess of excess reactant?
(c) What is the present conversion of the limiting reactant?

OR

Q. 4 (a) State the basic principle of material balance
(b) Calculate the following for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{HCl}_{3}+\mathrm{H}_{2}+\mathrm{HCl}
$$

(1) The stoichiometry ratio of Cl_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$
(2) If $4 \mathrm{kmol} \mathrm{Cl}_{2}$ is used per kmol of $\mathrm{C}_{2} \mathrm{H}_{4}$, find the $\%$ excess Cl_{2}
 completion
(c) A coal containing $\mathrm{C}=67.9 \%, \mathrm{H}=4.4 \%, \mathrm{~S}=0.8 \%, \mathrm{~N}=1.6 \%, \mathrm{O}=7.9 \%$, ash $=4.5 \%$ and water $=12.9 \%$ is burnt in a furnace. The product of combustion dry gas , analyses, $\mathrm{CO}_{2}=14.5 \%, \mathrm{O}_{2}=4.7$ and rest N_{2}. Calculate
1). The theoretical volume of air used for the complete combustion of 100 kg of coal.
2). The percent excess air used.
Q. 5 (a) Define: i) Heat capacity ii) Sensible heat and iii) Latent heat
(b) A heat exchanger for cooling hot oil uses $10000 \mathrm{~kg} / \mathrm{hr}$ of cooling water, which enters the exchanger at 294 K . The hot oil at the rate of $5000 \mathrm{~kg} / \mathrm{hr}$ enters at 423 K and leaves at 338 K and has an average heat capacity of $2.51 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$. Calculate the outlet temperature of the water
(c) Calculate the theoretical flame temperature for CO when it is burnt with 100% excess air. Both the reactants are at 373 K . The heat capacities (J/mol.K) (may be assumed constant) are 29.23 for $\mathrm{CO}, 34.83$ for $\mathrm{O}_{2}, 33.03$ for N_{2} and 53.59 for CO_{2}. The standard heat of combustion at 298 K is $-282.99 \mathrm{~kJ} / \mathrm{mol} \mathrm{CO}$

OR

Q. 5 (a) Define : Heat of formation and Heat of combustion
(b) Pure methane is heated from 303 K to 523 K at atmospheric pressure. Calculate the heat added per kmol methane using the following data: $\mathrm{Cp}=26.586+7.5820 \times 10^{-3} \mathrm{~T}-1.1200 \times 10^{-6} \mathrm{~T}^{2}, \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$
(c) Calculate the change in enthalpy between reactants and products if both are at 298 $\mathrm{K}\left(25^{\circ} \mathrm{C}\right)$ and if 5 mole of ethylene oxide is produced as per the following reaction:

$$
C_{2} H_{4(g)}+1 / 2 O_{2(g)}=C_{2} H_{4} O_{(g)}
$$

Data:

Component	$\Delta \mathrm{H}^{0} \mathrm{f}, \mathrm{kJ} / \mathrm{mol}$ at $298.15 \mathrm{~K}\left(25^{0} \mathrm{C}\right)$
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.50
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$	-52.63
$* * * * * * * * * * * * * * * *$	

