\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITYBE - SEMESTER- III(OLD) EXAMINATION - SUMMER 2019Subject Code: 130602Date:04/06/2019
Subject Name: Fluid MechanicsTime: 02:30 PM TO 05:00 PMInstructions:
Total Marks: 70

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) State and prove Pascal's law. 07
(b) Describe different types of fluids. 07
Q. 2 (a) What is manometer? Describe a differential manometer with sketch? 07
(b) The pressure intensity at a point in a fluid is given $5 \mathrm{~N} / \mathrm{cm}^{2}$. Find the 07corresponding height of fluid when fluid is (i) water (ii) oil of sp. Gravity $=0.80$and (iii) kerosene of sp. Gravity $=0.74$
OR
(b) Determine the dynamic viscosity of oil used for lubrication between a square plate $0.9 \mathrm{~m} \times 0.9 \mathrm{~m}$ and an inclined plane inclined at 30°. The weight of square plate is 400 N and it slide down the inclined plane with a uniform velocity of $0.4 \mathrm{~m} / \mathrm{sec}$. Thickness of oil film is 1.5 mm .
Q. 3 (a) Derive an expression for the total pressure and position of centre of pressure on a plane surface immersed vertically in a liquid.
(b) Explain how you will determine the meta-centre height of a floating body experimentally? Explain with neat sketch.

OR

Q. 3 (a) State the Bernoulli's equation and obtain Bernoulli's equation from Euler's 07
(b) A circular plate of 2.5 m diameter is immersed in water in such a way that its greatest and least depth below free surface is 3.5 m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of the center of pressure.
Q. 4 (a) What is venturimeter? Derive an expression for discharge through a 07 venturimeter.
(b) Define the equation of continuity. Obtain an expression for continuity. $\mathbf{0 7}$
OR
Q. 4 (a) Define force of buoyancy and meta-centre. Discuss the conditions of $\mathbf{0 7}$ equilibrium for floating and sub-merged bodies with neat sketches.
(b) Classify different types of orifices and write down the equations for hydraulic $\mathbf{0 7}$ coefficients used in it.
Q. 5 (a) Give classification of notches and weirs. Derive equation for the flow over a 07 triangular notch.
(b) The stream function for a two -dimensional flow is given by $\Psi=2 x y$, calculate 07
the velocity at the point $P(2,3)$. Find the velocity potential function ϕ.
Q. 5 (a) Water is flowing from a tapered pipe having diameters 350 mm and 200 mm at section 1 and 2 respectively. The flow rate through the pipe is $0.05 \mathrm{~m}^{3} / \mathrm{sec}$. The section 1 is 10 m above the datum and section 2 is 5 m above the datum. If intensity of pressure at section 1 is 0.5 MPa , find intensity of pressure of section 2.
(b) Obtain the general energy equation for compressible flow.

