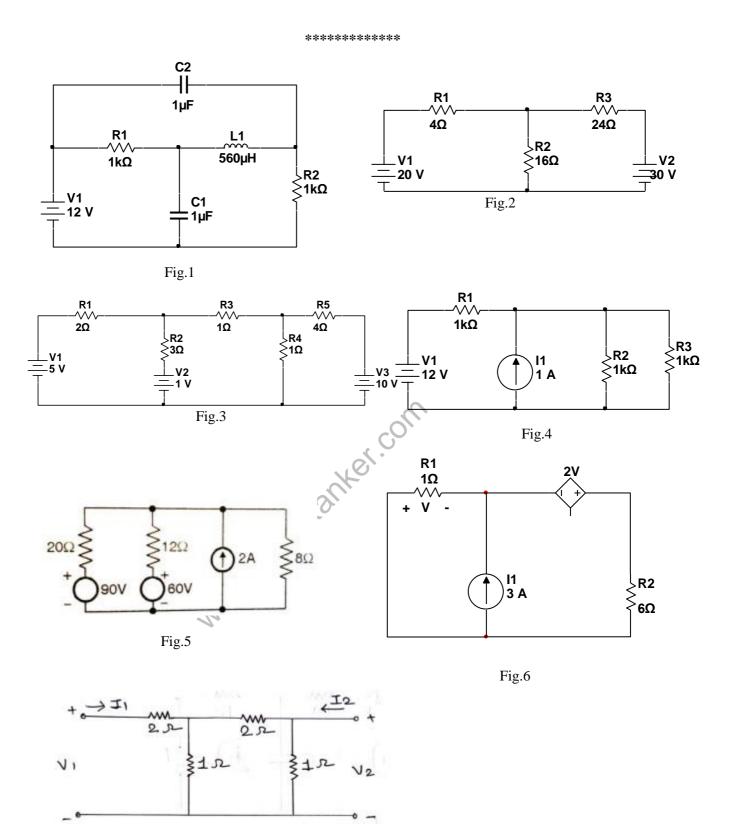


www.FirstRanker.com

Enrowww.FirstRanker.com


CITADAT TECHNOLOCICAL UNIVEDSITV

		BE - SEMESTER- III(OLD) EXAMINATION – SUMMER 2019	
Su	biect	Code: 130901 Date: 04/06/2019	
Subject Name: Circuits And Networks			
	•	2:30 PM TO 05:00 PM Total Marks: 70	
Instructions:			
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Define following terms: (a) Linear and Nonlinear Networks (b) Lumped and	07
		Distributed Networks (c) Principle of Duality	
	(b)	Construct the exact dual of the network of figure.1.	07
Q.2	(a)	State Thevenin's theorem. Calculate current passing through 4Ω resistance in	07
		the circuit shown in figure.2, using Thevenin's theorem.	
	(b)	For the circuit shown in figure.3 find the loop currents using mesh analysis.	07
		OR	
	(b)	Find the current passing through 3Ω resistor for the circuit shown in fig.4 using	07
	()	nodal analysis.	
Q.3	(a)	State and explain Millman's theorem.	07
	()	1	
	(b)	Derive the expression for rise of current and decay of current in R-L series	07
		circuit excited by d.c. voltage source.	
0.2	(\mathbf{a})	OR State and explain Supermedition theorem	07
Q.3	(a)	State and explain Superposition theorem.	07
	(b)	Find current in 20 Ω resistance in the circuit shown in figure. 5 using	07
	()	superposition theorem.	
Q.4	(a)	State and explain the Maximum Power Transfer Theorem. Drive the condition	07
C		for maximum power transfer to the load for DC and AC circuit.	
	(b)	Find the current in 6 Ω using Norton's Theorem for the circuit shown in fig. 6.	07
0.4	(\mathbf{a})	OR Evaluin and derive the stan response to P L series sirewit using Laplace	07
Q.4	(a)	Explain and derive the step response to R-L series circuit using Laplace Transformation method.	07
	(b)	Write the initial conditions for the inductor and capacitor at $t = 0+$ and $t = \infty$.	07
	()	The second s	
Q.5	(a)	Give relationship between y parameters and h parameters.	07
V	(a)	Sive relationship between y parameters and it parameters.	07
	(b)	Obtain z parameters for the network shown in figure. 7.	07

OR

- 1. Graph
- 2. Tree
- 3. Co-tree
- (b) Derive relationship between incidence matrix (A), fundamental cut-set matrix **07** (Q_f) and fundamental tie-set matrix (B_f).

