GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III(OLD) EXAMINATION - SUMMER 2019
 Date: 11/06/2019

Subject Code: 131404
Subject Name: Food Engineering Thermodynamics Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate between ideal and real gases.

A container of 1000 liter contains CO_{2} gas at 6 atmosphere pressure and $27^{\circ} \mathrm{C}$. Calculate the mass of gas in kg. Assume ideal gas behaviour.
[Take $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$]
(b) What is Van der Waals gas equation? Hundred kilogram of N_{2} gas is stored in a 20
liter sealed container at $7{ }^{\circ} \mathrm{C}$. Calculate the pressure of the gas in kPa using compressibility factor of $\mathrm{z}=0.88$. [Take $\mathrm{M}=28$ and $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \mathrm{K}$]
Q. 2 (a) Explain Zero ${ }^{\text {th }}$ law of thermodynamics. List different types of thermometers and explain the principle of operation of any one.
(b) Explain Joule-Kelvin coefficient specifying its importance.

For a 2-phase Liquid-Vapour system in thermal equilibrium, prove that: $\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{h_{f g}}{\bar{R}}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$.

OR

(b) Define enthalpy and specific heats C_{p} and C_{v}. Prove that $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\bar{R}$ for ideal gases. The temperature of 5 kg of a gas held in a rigid cylinder was increased from $24^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ by adding 45 kJ of heat externally. Calculate the work done and the change in internal energy of the system. [Take $\mathrm{C}_{\mathrm{v}}=745 \mathrm{~J} / \mathrm{kg} \mathrm{K}$]
Q. 3 (a) State first law of thermodynamics. Prove that the work done by an ideal gas undergoing a reversible adiabatic process is given by $\mathrm{W}=\frac{m R}{\gamma-1}\left(T_{1}-T_{2}\right)$.
(b) What is turbine? Write down SFEE for a fluid stream entering and leaving a system in terms of work and energy transfer per unit mass. Steam is flowing through a horizontal nozzle in steady state. The inlet and outlet conditions given are:
INLET: $\quad \mathrm{h}_{1}=3200 \mathrm{~kJ} / \mathrm{kg}, \mathrm{V}_{1}=110 \mathrm{~m} / \mathrm{s}, \mathrm{A}_{1}=0.11 \mathrm{~m}^{2}, \mathrm{v}_{1}=0.2 \mathrm{~m}^{3} / \mathrm{kg}$
OUTLET: $\mathrm{h}_{2}=2900 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v}_{2}=0.51 \mathrm{~m}^{3} / \mathrm{kg}$.
Calculate (i) Exit velocity in m/s
(ii) Mass flow rate of steam in kg / s
(iii) Exit area of the nozzle in m^{2}

OR

R.FirstRanker.com

gas undergoing a reversible adiabatic process. Ten kilogram of an ideal gas at $200^{\circ} \mathrm{C}$ and 20 bar pressure expands isentropically through a volume ratio of 5:1. Calculate the work done during the process in kJ .
[Take $\mathrm{C}_{\mathrm{p}}=1.025 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kgK}$]
(b) Define thermodynamic degrees of freedom and state Gibb's phase rule. Explain different types of thermodynamic equilibrium. Calculate the thermodynamic degrees of freedom of pure water at its critical point.
Q. 4 (a) Explain the following:
(i) Second law of thermodynamics
(ii) Clausius inequality
(ii) PMM1 And PMM2
(b) Explain Carnot theorems. A heat engine operating between two constant temperature reservoirs at 600 K and 400 K is producing a net steady work output of 24 kW . If the thermal efficiency of the engine is 80% of the maximum possible efficiency, calculate heat input to the engine and heat rejection in kW .

OR

Q. 4 (a) With the help of schematic diagram explain the operation of a heat engine and refrigerator A refrigerator is operating between $1^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ at a COP of 50% of the maximum possible COP. If the net cooling effect generated is 2 kW , calculate the power requirement.
(b) Prove the following:
(i) $\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$
(ii) $\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{V}}=-1$
Q. 5 (a) Draw a neat labeled P-v diagram of a pure substance (water) showing its various states. Determine the following using steam tables for saturated steam at 10 bar pressure:
(i) Saturation temperature in ${ }^{\circ} \mathrm{C}$
(ii) Entropy in $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$
(iii) Latent heat of vaporization in $\mathrm{kJ} / \mathrm{kg}$
(iv) Specific volume in $\mathrm{m}^{3} / \mathrm{kg}$
(b) The weather report on a particular summer day in Anand states the following:

Atmospheric pressure $=1.01325$ bar
Atmospheric temperature $=42^{\circ} \mathrm{C}$ \&
Relative humidity $=60 \%$.
Using Psychrometric Chart find out the following:
(i) Dry Bulb Temperature (DBT)
(ii) Wet Bulb Temperature (WBT)
(iii) Absolute humidity
(iv) Mass of moist air
(v) Dew point temperature
(vi) Specific volume
(vii) Specific enthalpy
Q. 5 (a) Draw and explain phase diagram of water on a T-s diagram.

Using Steam Tables determine the following for saturated steam at $160^{\circ} \mathrm{C}$:
(i)Specific enthalpy
(ii) Latent heat of vaporization (iii) Density
(iv) Specific entropy
(v) Saturation pressure in kPa
(b) Define the following in relation to moist air:
i. Dry bulb temperature
ii. Wet bulb and temperature
iii. Adiabatic saturation temperature
iv. Relative humidity
v. Absolute humidity
vi. Sensible heating
vii. Dehumidification

