Subject Code:2140105
Date:09/05/2019

Subject Name: Numerical Methods

Time:02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS
Q. 1 (a) Name two interpolation methods used for unequal intervals. Also state their formulas.
(b) Perform four iterations to find a root of the equation $x^{3}-4 x-9=0$ using Bisection method.
(c) Using fourth order Runge Kutta method, find $y(0.1)$ for differential equation $\frac{d y}{d x}=2 x+y, y(0)=1$ by taking $\mathrm{h}=0.1$
Q. 2 (a) Solve the following system by Gauss elimination method.
$x+3 y+2 z=5,2 x+4 y-6 z=-4, x+5 y+3 z=10$
(b) Find a real root of the equation $3 x=\cos x+1$, correct up to four decimal places using Newton Raphson method.
(c) Fit a second degree polynomial using least square method to the following data:

x	1	2	3	4	5
y	5	12	26	60	97

Also estimate y at $x=6$.
OR
(c) Fit a curve of the form $y=a e^{b x}$ to the following data:

x	1	53	5	7	9
y	115	105	95	85	80

Q. 3 (a) Using Newton's forward interpolation formula, find the value of $f(1.6)$.

x	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5

(b) Use trapezoidal rule to evaluate $\int_{0}^{2} \frac{x}{\sqrt{2+x^{2}}} d x$, dividing the interval into four equal parts.
(c) Use Gauss-Siedel method to solve the following system: $6 x+y+z=105,4 x+8 y+3 z=155,5 x+4 y-10 z=65$
Q. 3 (a) Evaluate $f(9)$ by using Lagrange's interpolation method from the following data:

x	5	7	11	13	17
$f(x)$	150	392	1452	2366	5202

(b) Evaluate $\int_{0}^{3} \frac{1}{1+x} d x$ with $n=6$ by using Simpson's $3 / 8$ rule.
(c) Compute $y(1.5) \& y^{\prime}(1)$ from the following data using Cubic Spline.

x	1	2	3
y	-8	-1	18

Q. 4 (a) Use Taylor's series method to find y at $x=0.03$ given that $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
(b) Find the root of $x \log _{10} x-1.9=0$, correct up to three decimal places with $x_{0}=3$ and $x_{1}=4$ using Secant method.
(c) Using Shooting method, Solve the boundary value problem:
Q. 4 (a) Solve the following system by Gauss Jordan method:
$x-2 y=-4,-5 y+z=-9,4 x-3 z=-10$
(b) Solve the equation $y^{\prime \prime}=x+y$ with the boundary conditions $y(0)=y(1)=0$ by finite difference method.
(c) Using Picard's method of successive approximation, obtain a solution up to fifth approximation of the equation $\frac{d y}{d x}=x+y, y(0)=1$.
Q. 5 (a) Explain Initial value problem and boundary value problem with example.
(b) Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(\theta, t)=0, u(5, t)=100$. Compute $u(x, t)$ with $\mathrm{h}=1$ by Crank-Nicholson method.
(c) Solve the boundary value problem 07 $y^{\prime \prime}-x=0, y(0)=0$ and $y^{\prime}(1)=-\frac{1}{2} \quad$ by the Rayleigh-Ritz method.

OR

Q. 5 (a) State the difference between finite difference method and finite element method.
(b) Discuss the concept of Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(c) Solve the boundary value problem $y^{\prime \prime}+y=-x, \quad y(0)=0, y(1)=0$ by the Galerkin method.

