www.FirstRanker.com Enrolment FirstRanker.com ## **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019 | Subject Code:2140107 | Date: 15/05/2019 | |----------------------|------------------| |----------------------|------------------| Subject Name: Computational fluid dynamics I Time:02:30 PM TO 05:00 PM **Total Marks: 70** ## **Instructions:** 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. | | 3. F | igures to the right indicate full marks. | MARKS | |------------|---------------------------|--|-------| | Q.1 | (a) | Define CFD? Why it is widely used as a research tool now days? | 03 | | Ų.I | (a) (b) | State applications of CFD in various fields. | 04 | | | (c) | Derive Continuity equation for any model of finite control volume fixed in space. | 07 | | Q.2 | (a) | Define Substantial derivative. | 03 | | | (b) | What are the three approaches used to study fluid flow problems? Explain in detail. | 04 | | | (c) | Define Discretization. Explain different discretization methods. OR | 07 | | | (c) | Using Taylor's series expansion 1 st order forward, backward and 2 nd order central difference formulas. | 07 | | Q.3 | (a) | What is physical significance of CFL number? | 03 | | | (b) | Explain Eigen value method for determining the classification of PDEs. | 04 | | | (c) | Explain Finite volume method for 1-D diffusion problem. | 07 | | | | OR | | | Q.3 | (a) | Define: Truncation error Round-off error | 03 | | | (b) | What do you mean by order of accuracy? Explain with example. | 04 | | | (c) | Using Taylor's series expansion derive: | 07 | | | | Second order central second difference w.r.t x & y | | | | | Second order central second difference for mixed derivative | | | Q.4 | (a) | What are the factors affecting the grid? | 03 | | | (b) | Write a note on Structured and unstructured grids. | 04 | | | (c) | What is Grid Transformation? Explain with an example. OR | 07 | | Q.4 | (a) | What is Boundary Condition? State its importance in solving fluid flow problem. | 03 | | | (b) | Explain Predictor and Corrector steps of Mac-Cormack technique. | 04 | | | (c) | Derive expressions to transform first derivatives w.r.t x, y & t to ξ , η & τ . | 07 | | Q.5 | (a) | Truncation error can be reduced by considering more number of grid points. True or False? How? | 03 | | | (b) | Discuss: Explicit vs. Implicit approach. | 04 | | | (c) | Write a short note on ADI scheme. | 07 | | | (-) | OR | - | | Q.5 | (a) | What are the three basic principles of fluid dynamics? | 03 | | - | (b) | Write a note on stretched grid. | 04 | | | (c) | Write a note on Lax-wendroff technique. | 07 | *****