Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) In a double effect evaporator plant, the second effect is maintained under vacuum of 475 torr $(\mathrm{mm} \mathrm{Hg})$. Find the absolute pressure in kPa , bar and psi.
(b) A solution of sodium chloride in water contains $30 \% \mathrm{NaCl}$ (by mass) at 333 K .

The density of the solution is $1.2 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution. Atomic mass: $\mathrm{Na}=23, \mathrm{Cl}=35.5$.
(c) Obtain an empirical equation for calculating the heat of reaction at any temperature T (in K) for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ Data: $\Delta \mathrm{H}_{\mathrm{R}}^{\circ}$ at $298 \mathrm{~K}=-82660 \mathrm{~J} / \mathrm{mol}, \mathrm{C}_{\mathrm{P}}^{\circ}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\mathrm{dT}^{3}, \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$.

Component	\mathbf{a}	$\mathbf{b} \times \mathbf{1 0}^{\mathbf{3}}$	$\mathbf{c} \times \mathbf{1 0}^{\mathbf{6}}$	$\mathbf{d} \times \mathbf{1 0}^{\mathbf{9}}$
$\mathrm{CH}_{4(\mathrm{~g})}$	19.2494	52.1135	11.973	-11.3173
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$	4.1261	155.0213	-81.5455	16.9755
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$	-4.2227	306.264	-158.6316	32.1455

Q. 2 (a) A weight of 1.10 kg of carbon dioxide occupies a volume of 33 litre at 300 K . Using the Van der Waals equation of state, calculate the pressure.
(b) The diameter and height of a vertical cylindrical tank are 5 ft and 6 ft 6 inch respectively. It is full up to 75% height with carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$, the density of which is $1.6 \mathrm{~kg} / \mathrm{lit}$. Find the mass in kg .
(c) A gas mixture has the following composition by volume.
Ethylene: 30.6%, Benzene: 24.5%, Qxygen: 1.3%, Methane: 15.5%, Ethane:
25.0%, Nitrogen: 3.1%. Find a) the average molecular weight of the gas
mixture, b) the composition by weight, and c) the density of the mixture in
$\mathrm{kg} / \mathrm{m}^{3}$ at STP.

OR

(c) In case of liquids, the local heat-transfer coefficient for long tubes and using bulk-temperature properties is expressed by the empirical equation

$$
h=0.023 G^{0.8} k^{0.67} c_{p}^{0.33} /\left(D^{0.2} \mu^{0.47}\right)
$$

where $\mathrm{h}=$ heat-transfer coefficient, $\mathrm{Btu} /\left(\mathrm{h} . \mathrm{ft}^{2}{ }^{0} \mathrm{~F}\right)$
$\mathrm{G}=$ mass velocity of liquid, $\mathrm{lb} /\left(\mathrm{ft}^{2} . \mathrm{s}\right)$
$\mathrm{c}_{\mathrm{p}}=$ heat capacity, Btu/(lb. $\left.{ }^{\circ} \mathrm{F}\right)$
$\mathrm{k}=$ thermal conductivity, Btu/(h.ft. $\left.{ }^{0} \mathrm{~F}\right)$
$\mathrm{D}=$ diameter of tube, ft and
$\mu=$ viscosity of liquid, $\mathrm{lb} /(\mathrm{ft} . \mathrm{s})$
Is the given equation dimensionally consistent? If yes, convert the equation into SI units.
Q. 3 (a) Explain Material balance of Extractor.
(b) Define Ideal gas law, Raoult's Law, Henry's Law and Dalton's Law. $\mathbf{0 4}$
(c) The average molar mass of a flue gas sample is calculated by two different $\mathbf{0 7}$ engineers. One engineer uses the correct molar mass of 28 for N_{2} and determines the average molar mass to be 30.08 , the other engineer, using an incorrect value of 14 , calculate the average molar mass to be 18.74. Calculate i) the volume $\%$ of N_{2} in the flue gases, and ii) if the remaining components of

OR

Q. 3 (a) Discuss methods of solving material balance problems without chemical 03 reaction.
(b) A single effect evaporator is fed with $1000 \mathrm{~kg} / \mathrm{h}$ of weak liquor containing 15% caustic by weight and is concentrated to get thick liquor containing 40% by weight caustic (NaOH). Calculate: a) kg / h of water evaporated, and b) kg / h of thick liquor obtained
(c) Heat capacity for gaseous SO_{2} is given by the following equation:

$$
\mathrm{C}_{\mathrm{p}}=43.458+10.634 \times 10^{-3} \mathrm{~T}-\frac{5.945 \times 10^{5}}{\mathrm{~T}^{2}} . \text { Calculate the heat required to }
$$ raise the temperature of 1 kmol pure SO_{2} from 300 K to 1000 K .

Q. 4 (a) Explain Material balance of Crystallizer.
(b) Define \& explain following terms: i) absolute humidity (H) ii) \% humidity iii) $\mathbf{0 4}$ wet-bulb temp (WB) iv) humid heat.
(c) The waste acid from a nitrating process containing $20 \% \mathrm{HNO}_{3}, 55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $25 \% \mathrm{H}_{2} \mathrm{O}$ by weight is to be concentrated by addition of concentrated Sulphuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated nitric acid containing $90 \% \mathrm{HNO}_{3}$ to get desired mixed acid containing $26 \% \mathrm{HNO}_{3}$ and $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the quantities of waste acid and concentrated acids required for 1000 kg of desired acid.

OR

Q. 4 (a) State Hess's Law of constant heat summation with example.
(b) With a near sketch show the material balance for the following unit $\mathbf{0 4}$ operations: Distillation and Evaporation.
(c) A solution of ethyl alcohol containing 8.6% alcohol is fed at rate of $1000 \mathrm{~kg} / \mathrm{h}$ to a continuous distillation column. The product is a solution containing 95.5% alcohol. The waste solution from the column carries 0.1% alcohol. All $\%$ are by weight. Calculate i) the mass flow rate of top \& bottom product in $\mathrm{kg} / \mathrm{h} \mathrm{ii)}$ the \% loss of alcohol.
Q. 5 (a) Define: (i) Standard Heat of formation (ii) Standard Heat of combustion (iii)
(b) Write a short note on recycling and bypassing operations.
(c) A pilot plant reactor was charged with 50 kg naphthalene and 200 kg (98% by mass) $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction was carried out for 3 hours at 433 K . The reaction goes near to completion. The product distribution was found to be 18.6% monosulphonate naphthalene and 81.4% disulphonate naphthalene. Calculate (a) the quantities of monosulphonate naphthalene (MSN) and disulphonate naphthalene (DSN) products, and (b) the complete analysis of the product.

OR

Q. 5 (a) Define Conversion, Yield, and Selectivity.
(b) For o-xylene, calculate (a) latent heatof vaporization at T_{B} using Riedel 04 equation, and (b) latent heat of vaporization at $25^{\circ} \mathrm{C}$ using Watson equation. Data given: For o-xylene: $\mathrm{Pc}=3732 \mathrm{kPa}, \mathrm{Tc}=630.3 \mathrm{~K}, \mathrm{~T}_{\mathrm{B}}=417.6 \mathrm{~K}$
(c) In the Deacon process for manufacture of Chlorine, hydrochloric gas is $\mathbf{0 7}$ oxidized with air. The reaction taking place is: $4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. The air used is in excess of 30% of that theoretically required and the oxidation is 80% complete. Calculate the composition by volume of dry gases leaving the reaction chamber.

