Subject Code:2140505
Date:09/05/2019
Subject Name: Chemical Engineering Maths
Time:02:30 PM TO 05:30 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define the following terms:
4. Accuracy
5. Precision
6. Truncation Error
(b) Solve the following system of equations by Gauss Elimination method:
$2 x+2 y-2 z=8 ; \quad-4 x-2 y+2 z=-14 ; \quad-2 x+3 y+9 z=9$
(c) Explain diagonally dominant system. Use Gauss -Seidel method to solve the system of equations up to three decimal places:

$$
2 x+15 y+6 z=72 ; \quad 54 x+y+z=110 ; \quad-x+6 y+27 z=85
$$

Q. 2 (a) Evaluate the sum $\sqrt{6}+\sqrt{7}+\sqrt{8}$ and find its percentage relative error. 03
(b) Find a real root of the equation $x^{3}+x^{2}-1=0$ using the bisection $\mathbf{0 4}$ method correct upto three decimal places.
(c) Discuss Newton-Raphson method geometrically. Find a real root of the equation $e^{x}-3 x=0$ up to two decimal places using NewtonRaphson method. Take $x_{0}=0$.

OR

(c) Derive secant method. Find the root of the equation $e^{-x}-\tan x=0$ using the secant method correct up to three decimal places. Take $x_{0}=1, x_{1}=0.7$.
Q. 3 (a) Write an algorithm for Newton-Raphson method. 03
(b) Find a real root of the equation $x^{3}-9 x+1=0$ in the interval $[2,3] \quad \mathbf{0 4}$ by the regula falsi method.
(c) Discuss about the pitfalls of Gauss elimination method and $\mathbf{0 7}$ techniques for improvement.

OR

Q. 3 (a) Prove that (i) $\Delta=E-1$, (ii) $E=e^{h D} \quad 03$
(b) Fit a straight line to the following data:

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

(c) Explain the principle of least squares and using it fit an exponential curve $y=a e^{b x}$ to the following data:

x	0	2	4	6	8
y	150	63	28	12	5.6

Q. $4 \quad$ (a)

Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using trapezoidal rule with $h=0.2$.
(b) Using Newton's backward difference interpolation formula find $f(0.40)$ from the following table:

x	0.10	0.15	0.20	0.25	0.30
$\mathrm{f}(\mathrm{x})$	0.1003	0.1511	0.2027	0.2553	0.3093

(c) Using Lagrange's interpolation formula, find the interpolating polynomial from the following table:

x	0	1	3	4
y	-12	0	12	24

Q. 4 (a) Write an algorithm of Simpson's $1 / 3$ rule.
(b) Apply Euler's method to solve the initial value problem

$$
\frac{d y}{d x}=\frac{x-y}{2}, \text { where } y(0)=1
$$

over $[0,3]$ using step size 0.5 .
(c) Write the formula for divided differences $\left[x_{0}, x_{1}\right]$ and $\left[x_{0}, x_{1}, x_{2}\right]$.

Using Newton's divided difference formula find $f(9)$ from the following table:

x	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202

Q. 5 (a) Define first, second and mixed boundary value problems for elliptic equations.
(b) Find $\frac{d y}{d x}$ at $x=1.30$ from the following data:

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	1.0000	1.0247	1.0488	1.0723	1.0954	1.1180	1.1401

(c) Apply fourth order Runge-Kutta method to find approximate value of y for $x=0.2$, in steps of 0.1 , if $\frac{d y}{d x}=x^{2}+y^{2}, \quad y(0)=1$.

OR

Q. 5 (a) Explain finite difference approximations to partial derivatives.
(b) Determine whether the following partial differential equations are elliptic, parabolic or hyperbolic:

1. $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=e^{x+y}$
2. $5 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial y^{2}}=\sin (3 x+4 y)$
(c) Using Gauus Seidel method up to three iterations solve the Laplace equation $u_{x x}+u_{y y}=0$ for the following square plate with boundary values as shown in the figure:

