First	Ra	nker.c	om					
Fseat No.	ker's	choice	www	/.FirstRan	ker.com	Enrolm	WtFlestRank	(er.co m
		GUJARAT			GICAL			
C	B A Ca	E - SEMESTE	R–IV(N	\mathbf{EW}) – \mathbf{EX}	AMINATI	ON - SUN	1MER 2019 Data: 00/05/	2010
Subjec	t CO	ae:2140505	.) F:	-	/ _ 4]. ~		Date:09/05/	2019
Subjec	L INA	$\mathbf{Me: Chemic}$	11 Engi 20 dia	neering N		•	Tatal Manle	a. 70
1 IME:U Instructi	02:30 ons:) PM 10 05:	SU PNI				i otal Mark	s: /U
11511011	. At	tempt all questi	ons.					
2	. M	ake suitable assu	imptions	wherever n	necessary.			
3	. Fig	gures to the righ	t indicat	e full marks	5.			02
Q.1	(a)	Define the foll	owing te	erms:				03
		2. Precisi	on					
		3. Trunca	tion Erro	or				
	(b)	Solve the foll	lowing s	system of	equations l	by Gauss	Elimination	04
		method:						
		2x + 2y - 2z =	8; -4	x-2y+2z	=-14; -	2x+3y+9	$\theta_z = 9$	~-
	(c)	Explain diagon	hally dor	ninant syste	em. Use Gau	uss –Seidel	method to	07
		2r+15v+6	$5_7 = 72$ ·	54 x + y +	-7 = 110	-r+6v+	27 ₇ = 85	
		20110910	·~ /=,	0100191	、 110,	W OJ I	212, 00	
0.2	(\mathbf{a})							02
Q.2	(a)	Evaluate the su	$\lim \sqrt{6} +$	$\sqrt{7} + \sqrt{8}$ an	d find its pe	rcentage re	elative error.	03
	(b) Find a real root of the equation $x^3 + x^2 - 1 = 0$ using the bisection					he bisection	04	
	(\mathbf{a})	Discuss Nowt	n P oph	on mothod	places.	lly Find a	real root of	07
	(C)	the equation $a^x - 3x = 0$ up to two desimal places using Newton					ng Newton	07
		Raphson method. Take $r = 0$						
		Ruphson meth	ou. Tuke	$\lambda_0 = 0.$	R			
	(c)	c) Derive secant method. Find the root of the equation $e^{-x} - \tan x = 0$ using the secant method correct up to three decimal places. Take					$x - \tan x = 0$	07
		$x_0 = 1, x_1 = 0.7$		C/F		1		
Q.3	(a)	Write an algor	ithm for	Newton-Ra	aphson meth	nod.		03
-	(b)) Find a real root of the equation $x^3 - 9x + 1 = 0$ in the interval [2, 3]					04	
		by the regula f	alsi metl	nod.				
	(c)	Discuss abou	t the p	itfalls of	Gauss elir	nination r	nethod and	07
		techniques for	improve	ement.	ъ			
03	(a)	Dress (had (i))			K _hD			03
Q.J	(a) (b)	Fit a straight li	$\Delta = E - I$	E, (11) $E = 0$	e data:			03
	(0)		$\frac{10}{0}$]	2	3	4	U-1
		y	1	1.8	3.3	4.5	6.3	
	(c)	Explain the pr	inciple o	f least squa	ares and using	ng it fit an	exponential	07
		curve $y = ae^{bx}$	to the f	ollowing da	ita :			
		X	0	2	4	6	8	
		у	150	63	28	12	5.6	

(a)

(c)

Q.4

www.FirstRanker.com

03

04

04

07

Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using trapezoidal rule with h = 0.2.

Using Newton's backward difference interpolation formula find 04 **(b)** f(0.40) from the following table:

Х	0.10	0.15	0.20	0.25	0.30
f(x)	0.1003	0.1511	0.2027	0.2553	0.3093

Using Lagrange's interpolation formula, find the interpolating 07 (c) polynomial from the following table:

Х	0	1	3	4	
у	-12	0	12	24	
<u>O</u> P					

OR

Q.4 Write an algorithm of Simpson's 1/3 rule. **(a)**

Apply Euler's method to solve the initial value problem **(b)**

$$\frac{dy}{dx} = \frac{x - y}{2}$$
, where $y(0) = 1$

over [0, 3] using step size 0.5.

Write the formula for divided differences $[x_0, x_1]$ and $[x_0, x_1, x_2]$. 07 (c) Using Newton's divided difference formula find f(9) from the following table:

Х	5	7	11	13	17	
f(x)	150	392	1452	2366	5202	

- **Q.5** (a) Define first, second and mixed boundary value problems for elliptic 03 equations.
 - Find $\frac{dy}{dx}$ **(b)** at x = 1.30 from the following data: 1.10 1.15 (1.20)Х 1.001.05
 - 1.25 1.30 1.0247 1.0488 1.0723 1.0954 1.1180 1.1401 V 1.0000 Apply fourth order Runge-Kutta method to find approximate value

of y for
$$x = 0.2$$
, in steps of 0.1, if $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$.

- O OR **Q.5** (a) Explain finite difference approximations to partial derivatives. 03
 - Determine whether the following partial differential equations are **(b)** 04 elliptic, parabolic or hyperbolic:

1.
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = e^{x+y}$$

2.
$$5 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial y^2} = \sin(3x + 4y)$$

07 Using Gauus Seidel method up to three iterations solve the Laplace (c) equation $u_{xx} + u_{yy} = 0$ for the following square plate with boundary values as shown in the figure:
