FirstRanker.com irstranker's choice

Enroww.thirstRanker.com www.FirstRanker.com **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2141307 Date:15/05/2019 **Subject Name: Basics of Environmental Hydraulics** Time:02:30 PM TO 05:00 PM **Total Marks: 70** Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. MARKS Q.1 Define: (i) specific gravity (ii) viscosity (iii) mass density (a) 03 **(b)** Differentiate between: (i) ideal fluid and real fluid 04 (ii) cohesion and adhesion Explain phenomena of capillarity. Obtain an expression of capillary 07 **(c)** rise of a liquid. 0.2 Define the term Total pressure and centre of pressure. 03 (a) A cylinder container has a diameter of 0.5 m and a height of 1 m. If it 04 **(b)** is to be filled with a liquid having a specific weight of 2000 N/m^3 , how many kg of this liquid must be added? Derive an Expression for the depth of centre of pressure when lamina 07 **(c)** is immersed in a liquid at an angle with horizontal. OR Discuss and derive an expression of discharge through partially 07 **(c)** submerged orifice. Differentiate between simple manometer and differential manometer. Q.3 **(a)** 03 Explain with sketch the relationship between various types of pressure. **(b)** 04 (c) Two tanks A and B have 70 m difference in water levels, and are 07 connected by a pipe 0.25 m diameter and 6 km long with 0.002 friction coefficient. The pipe is tapped at its mid point to leak out 0.04 m3/s flow rate. Minor losses are ignored. Determine the discharge leaving tank A? Find the discharge entering tank B? OR Q.3 **(a)** State limitations in use of piezometer and simple u-tube manometer. 03 Derive Euler's equation of motion along streamline. Also state 04 **(b)** assumption made. Two reservoirs have 6 m difference in water levels, and are connected 07 **(c)** by a pipe 60 cm diameter and 3000 m long. Then, the pipe branches into two pipes each 30 cm diameter and 1500 m long. The friction coefficient is 0.01. Neglecting minor losses, determine the flow rates in the pipe system? Define: (i) Orifice, (ii) Notch and (iii) Weir 03 0.4 (a) Derive the equation for coefficient of discharge. **(b)** 04 Water is discharging through an external cylindrical mouthpiece of **(c)** 07 diameter 120 mm under a constant head of 5 m. Calculate discharge and absolute pressure head of water at vena-contracta. Take atmospheric pressure head = 10.3 m of water, Cd = 0.855, Cc for vena contracta = 0.62

retan	^K (a) ^S	Define following terms First Ranker. Condient line www.First Ranker.	com
	(b)	Differentiate between triangular notch and rectangular notch.	04
	(c)	Derive an expression for time of emptying a circular horizontal tank with an orifice at its bottom.	07
Q.5	(a)	What is mouthpiece? Enlist the classification of mouthpiece.	03
	(b)	Derive an expression for time of emptying a tank with rectangular weir.	04
	(c)	Determine the time required to lower the water level from 3 m to 2 m in a reservoir of dimension 60m x 60m, by (i) a rectangular notch of length 1m, (ii) a right angled V-notch. Take $Cd = 0.62$.	07
		OR	
Q.5	(a)	Define open channel flow. Explain its types in detail.	03
	(b)	Compare the Open Channel Flow & Pipe Flow	04
	(c)	What do you mean by "Most economical section" of an open channel? How it is determine? What are the conditions for the rectangular channel for best conditions?	07

www.firstRanker.com