

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019 Code:2141406 Date:15/05/2019

Subject Code:2141406

Subject Name: Food Engineering Transport Phenomenon

Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.

MARKS

07

- Q.1 (a) Define: (i) Atmospheric pressure (ii) Absolute pressure (iii) Guage 03 pressure
 (b) Derive the equation for pressure variation in fluid at rest. 04
 - (c) A differential manometer is connected at the two points A and B of two pipes. The pipe A contains liquid of specific gravity 1.5 while B contains liquid of specific gravity 0.9. The vertical distance between the axes of two pipes is 3 m. The vertical height of liquid column in the left limb is 5 m. he pressure at A and B are 1kgf/cm² and 1.8kgf/cm² respectively. Find the difference in mercury level in the differential manometer.
- Q.2 (a) At a certain point in an oil the shear stress is 0.2 N/m² and the velocity gradient is 0.21 s⁻¹. If the mass density of the oil is 950 kg/ m³ find the kinematic viscosity.
 - (b) What is dimensional homogeneity? Check the dimensional 04 homogeneity of the equation: $V = \sqrt{2gH}$ where V is velocity, g is acceleration due to gravity and H is height.
 - (c) (i) Describe the phenomena of capillarity rise and fall.
 (ii) Determine the minimum size of a glass tube, which can be used to measure pressure in water flowing system. The capillary rise in the tube must not exceed 10 mm and surface tension of water- air glass interface is 0.001 / N m.
 - OR
 - (c) Using Buckingham's π theorem show that the velocity through a circular orifice is given by $V = \sqrt{2gH} \varphi \left[\frac{D}{H}, \frac{\mu}{\rho VH}\right]$ where H is head causing flow, D is diameter of orifice, μ is coefficient of viscosity, ρ is mass density and g is acceleration due to gravity.
- Q.3 (a) Define the term (i) Metacentre (ii) Centre of buoyancy (iii) Vapour 03 pressure
 - (b) A rectangular pontoon is 5 m long 3 m wide and 1.2 m high. The depth of immersion of pontoon is 0.80 m in sea water. If the centre of gravity is 0.60 m above the bottom of the pontoon, determine the metacentric height. Density of sea water = 1025 kgm^{-3}
 - (c) Derive the equation for the total pressure and center of pressure for 07 inclined plane surface submerged in liquid.

OR

Q.3 (a) If the equation of a velocity profile over a plate is $v = 5y^2 + y$ (where v 03 is the velocity in m/s) determine the shear stress at y = 0 and at y = 7.5cm. Given the viscosity of the liquid is 8.35 poise.

FILS		inker.com	
Firstra	nk6)'s	What are dimensionless FristRanker even the equation of FRESTRANKer number and Froude number.	.coth
	(c)	Discuss the conditions of equilibrium of a floating and submerged body.	07
Q.4	(a)	Calculate : (i) Pressure gradient along the flow (ii) Average velocity (iii) Discharge for an oil of viscosity 0.02 Ns/m ² flowing between two stationary parallel plates 1m wide maintained 10 mm apart. The velocity midway between the plate is 2m/s.	03
	(b)	Prove that the velocity distribution for viscous flow between two parallel plates when both plates are fixed across a section is parabolic in nature.	04
	(c)	What is viscous flow? Derive an expression of Hagen Poiseuille equation.	07
		OR	
Q.4	(a)	Define diffusion and describe in brief about Fick's law of diffusion.	03
	(b)	Define: laminar boundary layer, turbulent boundary layer, laminar sub- layer and boundary layer thickness.	04
	(c)	Find displacement thickness, momentum thickness and energy thickness for the velocity distribution in boundary layer given by: $u/U = 2(y/\delta) - (y/\delta)^2$	07
Q.5	(a)	The velocity potential function is given by $\emptyset = (-xy^3/3) - x^2 + (x^3y/3) + y^2$ (i) Find velocity components in x and y direction (ii) Show that \emptyset represents possible case of flow	03
	(b)	Derive an equation of discharge through Venturi meter.	04
	(c)	State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's theorem from first principle and state the assumptions made for derivation. OR	07
Q.5	(a)	Write a short note on rotameter	03
	(b)	Classify notches and derive an equation of discharge for triangular notch.	04
	(c)	Define the equation of continuity. Obtain an expression for continuity equation for a three dimensional flow.	07

ANNY.