Subject Code:2141703
Date:09/05/2019
Subject Name: Numerical Techniques \& Statistical Methods
Time:02:30 PM TO 05:30 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) If $\mathrm{X}=3.4327$, find the absolute and relative errors if :
(a) X is truncated to three decimal places.
(b) X is rounded off to three decimal places.
(b) Calculate mean and mode for the following data:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	10	14	19	17	13

(c) Use Fourth order Runge-Kutta method to find $y(0.2)$ with $h=0.1$, given that
$\frac{d y}{d x}=2 x+y, y(0)=1$
Q. 2 (a) Using the power method, find the largest Eigen value for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) Apply Gauss - Seidel iteration method to solve :
$20 x+y-2 z=17, \quad 3 x+20 y-z=-18, \quad 2 x-3 y+20 z=25$
(c) Construct an Interpolating polynomial which takes the following values :

x	0	1	2	3	4	5	6	7
y	1	2	4	7	11	16	22	29

OR

(c) Obtain Cubic spline for subinterval $0 \leq x \leq 1 \& 1 \leq x \leq 2$ from the following data:

x	0	1	2	3
$f(x)$	1	2	33	244

Q. 3 (a) Considering following tabular values, Determine the area bounded by the given
curve and X-axis between $x=10$ to $x=16$ by Trapezoidal rule.

x	10	11	12	13	14	15	16
y	1.02	0.94	0.89	0.79	0.71	0.62	0.55

(b) Using Newton's forward formula, find the value of $f(1.6)$

x	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5

(c) Use Euler's method to find $y(2)$ from the differential equation $\frac{d y}{d x}=x+2 y, y(1)=1$ with $h=0.1$

OR

Q. 3 (a) Using Simpson's $1 / 3$ rule, evaluate $\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)} d x$ by taking 4 sub intervals.
(b) Evaluate $\int_{0}^{1} \exp \left(-x^{2}\right) d x$ using the Gaussian Integration formula with $\mathrm{n}=3$.
 $y(0.4)$ by Milne's Predictor - Corrector method.
Q. 4 (a) There are two boxes A and B containing 4 white, 3 red and 3 white, 7 red balls respectively. A box is chosen at random and a ball is drawn from it, If the ball is white, find the probability that it is from box A .
(b) An unbiased coin is tossed 6 times. Find the probability of getting (1) exactly 4 heads (2) at least 4 heads.
(c) Eleven school boys were given a test in a Subject. They were given a month's further coaching and a second test of equal category was held at the end of it. Do the marks give evidence that the students have benefited by extra coaching?

Boys	1	2	3	4	5	6	7	8	9	10	11
Marks $1^{\text {st }}$ test	23	20	19	21	18	20	18	17	23	16	19
${\text { Marks } 2^{\text {nd }}}^{\text {test }}$	24	19	22	18	20	22	20	20	23	20	17

(At 5% level of significance for $\mathrm{n}=10 \mathrm{~d}$. f. $t_{T}=2.228$)

OR

Q. 4 (a) Two people are selected at random from a group of seven men and five women.

Find the Probability that both are men or both are women.
(b) 100 Electric bulbs are found to be defective in a lot of 5000 bulbs. Find the probability that at the most 3 bulbs are defective in a box of 100 bulbs.
(c) A dice is thrown 150 times and the following results are obtained.

Number turned up	1	2	3	4	5	6
Frequency	19	23	28	17	32	31

Test the Hypothesis that the dice is unbiased at 5% level of significance.
(At 5\% level of significance for $\mathrm{n}=5$ d. f. $\quad \chi^{2}{ }_{T}=11.07$)
Q. 5 (a) Find the standard deviation of a group of data points:
$101.8, \quad 103.2, \quad 104.0, \quad 102.5,103.5$
(b) Define Chi-square Test. State (a) conditions to apply (est (b) application of test
(c) Represent the following information in form-of a network. Find average duration time or expected time of each activity and obtain the critical path.

Activity	$1-$	$2-$	$2-$	$3-$	$4-$	$4-$	$5-$	$5-$	$7-$	$8-$	$9-$	$6-$
	2	3	4	5	5	6	7	8	9	9	10	10
Optimistic time	4	1	8	3	2	3	3	4	4	2	4	4
Most Likely time	9	5	10	6	4	7	7	8	9	6	11	7
Pessimistic time	14	18	17	8	5	10	10	9	14	10	18	9

OR

Q. 5 (a) Compute the Median from the data:

Class	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$
Frequency	8	13	22	27	18	7

(b) A bag Contains 5 white and 7 black balls. Find the expectation of a man who is allowed to draw two balls from the bag and who is to receive one rupee for each black ball and two rupees for each white ball.
(c) Draw PERT - diagram after finding out expected time \& find critical path.

Activity	Sequence	Optimistic Time	Most Likely Time	Pessimistic Time
A	$1-2$	7	12	13
B	$1-3$	7	10	12
C	$2-5$	8	13	15
D	$3-5$	10	12	22
E	$5-6$	10	14	18

