

First R	convergence of the series	07
TIStidiker	$\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^3}$ and $\sum_{n=0}^{\infty} (\underline{FirstRanker}, \underline{com} - \sqrt{n})$. www.FirstRanker	.com
Q.4 (a)	Show that the function $f(x, y) = \frac{2x^2y}{1-x^2}$ has no limit as (x, y)	03
	approaches to (0,0)	
(b)	Suppose f is a differentiable function of x and y and $g(u, v) =$	04
	$f(e^{u} + sinv, e^{u} + cosv)$. Use the following table to calculate	
	$g_u(0,0), g_v(0,0), g_u(1,2) \text{ and } g_v(1,2).$	
	$\begin{array}{c c} f & g & f_x & f_y \\ \hline \end{array}$	
	(0,0) 3 6 4 8 (1,2) 6 3 2 5	
(c)	Find the Fourier series of 2π –periodic function $f(x) =$	07
	$x^2 \ 0 < x < 2\pi$ and hence deduce that $\frac{\pi^2}{\pi^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$	
	$x , 0 < x < 2n$ and hence deduce that $_{6}^{6} - \sum_{n=0}^{6} n^{2}$.	
Q.4 (a)	Verify that the function $u = e^{-\alpha^2 k^2 t} \cdot sinkx$ is a solution f the	03
	heat conduction evaluation $u_t = \alpha^2 u_{xx}$.	
(b)	Find the half-range cosine series of the function	04
	$f(x) = \begin{cases} 2, \ -2 < x < 0 \\ 0, \ 0 < x < 2 \end{cases}$	
	(0, 0 < x < 2)	
(c)	Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are	07
	closest to and farthest from the point $(3,1,-1)$.	
Q.5 (a)	Find the directional derivative $D_u f(x, y)$ if $f(x, y) = x^3 - \frac{\pi}{2}$	03
	$3xy + 4y^2$ and u is the unit vector given by angle $\theta = \frac{1}{6}$. What	
(h)	18 $D_u f(1,2)$? Find the area of the region bounded v the curves $v = sin r, v = c$	04
	r ind the area of the region bounded y the curves $y = strix$, $y = cos x$ and the lines $x = 0$ and $x = \frac{\pi}{2}$	•••
(c)	$[0 \ 0 \ -21]$	07
	Prove that $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is diagonalizable and use it to	
	[1 0 3]	
	OR	
Q.5 (a)	Define the rank of a matrix and find the rank of the matrix $A =$	03
	$\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 4 & 5 & -3 \\ 1 & 4 & 7 \end{bmatrix}$.	
(b)	Use Gauss-Jordan algorithm to solve the system of linear	04
	equations $2x_1 + 2x_2 - x_3 + x_5 = 0$	
	$-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$	
	$x_1 + x_2 - 2x_3 - x_5 = 0$	
(c)	State Cayley-Hamilton theorem and verify if for the matrix	07
	$A = \begin{bmatrix} -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$	
	L-2 U IJ	