FirstRanker.com

s choice www.FirstRanker.com Enrowww.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code:2142406Date:17/05/2019Subject Name: Digital Electronics and its applicationsDate:17/05/2019Time:02:30 PM TO 05:00 PMTotal Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.Q.1 (a) Explain D'Morgans theorem with truth table.(b) Fill in the blanks(1) (101101)2 = ()10(2) (55)	
 Subject Name: Digital Electronics and its applications Time:02:30 PM TO 05:00 PM Instructions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) (101101)2 = ()10 	
 Time:02:30 PM TO 05:00 PM Instructions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) (101101)2 = ()10 (2) (55) 	
 Instructions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Q.1 (a) Explain D'Morgans theorem with truth table. Fill in the blanks (1) (101101)2 = ()10 	
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) (101101)₂ = ()₁₀ (2) (55) (55) 	
 Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) (101101)2 = ()10 (2) (55) 	
Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) $(101101)_2 = ()_{10}$	
Q.1 (a) Explain D'Morgans theorem with truth table. (b) Fill in the blanks (1) $(101101)_2 = ()_{10}$ (2) (55)	
(b) Fill in the blanks (1) $(101101)_2 = ()_{10}$	0.7
(b) This in the ordinals (1) $(101101)_2 = ()_{10}$ (2) (55) (())	03
(2) (55) ()	04
$(2)(55)_{10} = (2)_{10}$	
(c) Minimize the following Boolean function using sum of products (SOP):	07
$f(a,b,c,d) = \sum m(3,7,11,12,13,14,15)$	01
O.2 (a) What is universal logic gate? Give the name of universal logic gates.	03
(b) Define Boolean Algebra? Explain Duality Principles with example.	04
(c) Explain two input (i) AND (ii) OR and (iii) EX-OR gates.	07
OR	
(c) Explain NAND as universal logic gate in detail.	07
0.3 (a) What is K-map? What is disadvantage of K-map method?	03
(b) Compare Combinational logic and Sequential logic in tabular form.	04
(c) Design and explain full adder using 3×8 decoder.	07
OR	
Q.3 (a) Design full adder using two half adder.	03
(b) Write a note on Binary Ripple Counter.	04
(c) Explain edge-utggered D Php-hop and SK Php-hop in detail.	07
Q.4 (a) Give the difference between Latch and Flip Flop.	03
(b) What is race around condition?	04
(c) Design & explain the block diagram of a 4:1 Multiplexer using 2:1 Multiplexer.	07
OA (a) Euclain with no score shotshas DLA control	0.2
(b) Design synchronous BCD counter	U3 04
(c) Design a circuit for 4-bit bidirectional shift register.	07
	01
Q.5 (a) Define state and state diagram.	03
(b) Compare SRAM & DRAM in all aspects.	04
(c) Design and explain 3 bit data comparator circuit.	07
O.5 (a) Explain in brief Scratchpad memory	63
(b) Explain Accumulator and ALU status register in brief.	04
(c) Discuss Hardwired vs. Micro-programmed control unit.	07
