FirstRanker.com

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 3110015

Date: 01/06/2019

Subject	Name:	Mathematics	-2

Time: 10:30 AM TO 01:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	Find the Fourier integral representation of $f(x) = \begin{cases} x \ ; x \in (0, a) \\ 0 \ ; x \in (a, \infty) \end{cases}$	03
	(b)	Define: Unit step function. Use it to find the Laplace transform of $f(t) = \begin{cases} (t-1)^2 \ ; \ t \in (0,1] \\ 1 \ ; \ t \in (1,\infty) \end{cases}$	04
	(c)	Use the method of undetermined coefficients to solve the differential equation $y'' - 2y' + y = x^2 e^x$.	07
Q.2	(a)	Evaluate $\oint_C \overline{F} \cdot d\overline{r}$; where $\overline{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ and <i>C</i> is the curve given by the parametric equation	03
	(b)	$C: r(t) = t^2 \hat{i} + t \hat{j}; \ 0 \le t \le 2$. Apply Green's theorem to find the outward flux of a vector field $\overline{F} = \frac{1}{xy}(x \hat{i} + y \hat{j})$ across the curve bounded by $y = \sqrt{x}$, $2y = 1$ and $x = 1$.	04
	(c)	Integrate $f(x, y, z) = x - yz^2$ over the curve $C = C_1 + C_2$, where C_I is the line segment joining (0,0,1) to (1,1,0) and C_2 is the curve $y=x^2$ joining (1,1,0) to (2,4,0).	07
	(c)	OR Check whether the vector field $\overline{F} = e^{y+2z} \hat{i} + x e^{y+2z} \hat{j} + 2x e^{y+2z} \hat{k}$ is conservative or not. If yes, find the scalar potential function $\varphi(x, y, z)$ such that $\overline{F} = \text{grad } \varphi$.	07
Q.3	(a)	Write a necessary and sufficient condition for the differential equation $M(x,y)dx + N(x,y)dy = 0$ to be exact differential equation. Hence check whether the differential equation $[(x + 1)e^{x} - e^{y}]dx - xe^{y}dy = 0$ is exact or not.	03
	(b)	Solve the differential equation $(1 + y^2)dx = (e^{-\tan^{-1}y} - x)dy$	04
	(c)	By using Laplace transform solve a system of differential equations $\frac{dx}{dt} = 1 - y$, $\frac{dy}{dt} = -x$, where $x(0) = 1, y(0) = 0$.	07
		dt = 0	
Q.3	(a)	Solve the differential equation	03

 $(2x^3 + 4y)dx - xdy = 0.$

ER

			nker.com	
	Firstra	¶₿₽r's	Solve: $(x + 1) \frac{dy}{dx}$ www.FirstRanker.com www.FirstRanker.com	04
		(c)		07
1	Q.4	(a)	Find the general solution of the differential equation $e^{-y}\frac{dy}{dx} + \frac{e^{-y}}{x} = \frac{1}{x^2}$	03
		(b)		04
		(c)	Find a power series solution of the differential equation $y'' - xy = 0$ near an ordinary point $x=0$.	07
	0.4	(\cdot)	OR Find the second solution of the differential exaction	0.7
	Q.4	(a)	Find the general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} - \sqrt{y} = 0.$	03
		(b)	Solve : $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = x$	04
		(c)		07
	Q.5	(a)	Write Legendre's polynomial $P_n(x)$ of degree- <i>n</i> and hence obtain $P_1(x)$ and $P_2(x)$ in powers of <i>x</i> .	03
		(b)		04
		(c)		07
	Q.5	(a)		03
		(b)		04
		(c)	"	07
