

BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2143406 Date:09/05/2019 Subject Name: Thermo Dynamics and Thermal Engineering Time:02:30 PM TO 05:00 PM **Total Marks: 70 Instructions:**

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary. 2.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Show that internal energy is Property of the system.
 - (b) Write and explain the First Law of Thermodynamics.
 - (c) A fluid system, contained in a piston and cylinder machine, passes through a 07 complete cycle of four processes. The sum of all heat transferred during a cycle is – 340 kJ. The system completes 200 cycles per min.

Complete the following table showing the method for each item, and compute the net rate of work output in kW.

Process	Q(KJ/min)	W(KJ/min)	dU(KJ/min)
1-2	0	4340	
2-3	42000	0	
3-4	-4200		-73200
4-1			

- (a) Write a short note on Brayton cycle. 03 Q.2 04
 - (b) Write a short note on modified Rankine cycle,
 - (c) Explain Rankine cycle with p-v and T s diagram and find the efficiency of 07 Rankine cycle.

OR

- (c) The power developed by a turbine in a certain steam plant is 1200 kW. The 07 heat supplied to the steam in the boiler is 3360 kJ/kg, the heat rejected by the system to cooling water in the condenser is 2520 kJ/kg and the feed pump work required to pump the condensate back into the boiler is 6 kW.
- (a) Define Effectiveness. Q.3

Q.3

- (b) One kg of air is compressed polytropically from 1 bar pressure and a 04 temperature of 300 K to a pressure of 6.8 bar and temperature of 370 K. Determine the irreversibility if the sink temperature is 293 K. Assume R =0.287 kJ/kg K, cp = 1.004 kJ/kg K and cv = 0.716 kJ/kg K.
- (c) Derive and Explain Clausius-Claperyon Equation with p-T Diagram 07 OR

(a) Define and explain Available and Unavailable Energy

- 03 (b) 15 kg of water is heated in an insulated tank by a churning process from 300 04 K to 340 K. If the surrounding temperature is 300 K, find the loss in availability for the process.
- (c) Derive Maxwell's equation
- (a) State and explain Dalton's law Q.4
 - (b) A vessel of 0.35 m3 capacity contains 0.4 kg of carbon monoxide (molecular 04 weight = 28) and 1 kg of air at 20° C. Calculate :
 - (i) The partial pressure of each constituent
 - (ii) The total pressure in the vessel, and

The gravimetric analysis of air is to be taken as 23.3% oxygen (molecular weight = 32) and 76.7% nitrogen (molecular weight = 28).

(c) Prove the following relation
$$M = \frac{\sum n_i M_i}{\sum n_i} \frac{1}{\sum \frac{m_{fi}}{M_i}}$$
 07

03

04

03

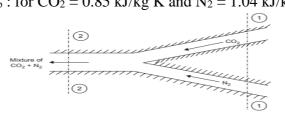
07

03

www.FirstRanker.com

03

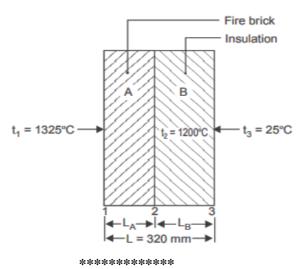
04


04

 n_i = Number of moles of an any constituent,

 m_{fi} = Mass fraction of the constituent, and M_i = Molecular weight of the constituent.

OR


- (a) Show that $C_{\nu} = \frac{R}{\nu 1}$ **Q.4**
 - (b) Write a short note on Compressibility chart
 - (c) 4 kg of carbon dioxide at 40° C and 1.4 bar are mixed with 8 kg of nitrogen at 07 160°C and 1.0 bar to form a mixture at a final pressure of 0.7 bar. The process occurs adiabatically in a steady flow apparatus. Calculate : (i) The final temperature of the mixture ; (ii) The change in entropy. Take value of C_p : for $CO_2 = 0.85 \text{ kJ/kg K}$ and $N_2 = 1.04 \text{ kJ/kg K}$.

- Q.5 (a) A hot plate 1 m \times 1.5 m is maintained at 300°C. Air at 25°C blows over the 03 plate. If the convective heat transfer coefficient is 20 W/m²°C, calculate the rate of heat transfer.
 - (b) Write a short note on Thermal Conductivity
 - (c) The effective temperature of a body having an area of 0.12 m^2 is 527° C. 07 Calculate the following : (i) The total rate of energy emission. (ii) The intensity of normal radiation, and (iii) The wavelength of maximum monochromatic emissive power. Take; $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

- Q.5 (a) Define black body, white body & gray body,
 - 03 (b) The inner surface of a plane brick wall is at 60°C and the outer surface is at 04 35°C. Calculate the rate of heat transfer per m² of surface area of the wall, which is 220 mm thick. The thermal conductivity of the brick is 0.51 W/m°C.
 - (c) A reactor's wall 320 mm thick, is made up of an inner layer of fire brick (k =07 0.84 W/m°C) covered with a layer of insulation (k = 0.16 W/m°C). The reactor operates at a temperature of 1325° C and the ambient temperature is 25° C. (i) Determine the thickness of fire brick and insulation, which gives minimum heat loss. (ii) Calculate the heat loss presuming that the insulating material has a maximum temperature of 1200°C.

If the calculated heat loss is not acceptable, then state whether addition of another layer of insulation would provide a satisfactory solution.

