Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Distinguish between arch, cable, net, membrane, framed and grid structures. 07
(b) Derive the torsion formula for Hollow circular shafts.
Q. 2 (a) Write a note on shear centre. 07
(b) A ring is made of round steel bar 30 mm diameter and the mean radius of the ring 07is 180 mm . Calculate the maximum tensile and compressive stresses in thematerial of the ring if it is subjected to a pull of 12 kN .

OR

(b) Derive relation between slope, deflation and radius of curvature. 07
Q. 3 (a) Explain Macaulay's method in brief. 07
(b) Derive the EULER'S formula when

Case -1 : when both ends of the column are hinged
Case -2: when one end is fixed and other is free.

OR

Q. 3 (a) The maximum normal stress and the maximum shear stress analyzed for a shaft of 150 mm diameter under combined bending and torsion were found to be $120 \mathrm{MN} / \mathrm{m}^{2}$ and $80 \mathrm{MN} / \mathrm{m}^{2}$ respectively. Find the bending moment and torque to which the shaft is subjected.

If the maximum shear stress to be limited to $100 \mathrm{MN} / \mathrm{m}^{2}$ find how much torque can be increased if the bending moment is kept constant.
(b) Write a note on columns and brackets and explain with neat sketch.
Q. 4 (a) Explain wind pressure on chimney in brief.

(b) A beam of T-section (flange: 100 mm X 20 mm ; web: 150 mm X 10 mm) is 2.5
meters in length and is simply supported at the ends. It carries a load of 3.2 kN
inclined at 20 degree to the vertical and passing through the centroid of the
section. If $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ calculate :

1) Maximum tensile stress
2) maximum compressive stress
3) deflection due to the load.

OR

07Q. 4 (a) Explain the theory of stresses in curved beam in brief. 07

(b) A steel strut has an outside diameter of 180 mm and inside diameter of 120 mm
and is 6 m long. It is hinged at both ends and is initially bent. Assuming the centre
line of the strut as sinusoidal with maximum deviation of 9 mm , determine the
maximum stress developed due to an axial load of 150 kN

Take $\mathrm{E}=208 \mathrm{GN} / \mathrm{m}^{2}$
Q. 5 (a) Explain earth pressure on retaining walls in brief. 07
(b) Write a note on transversely loaded circular beams in brief. 07
OR
Q. 5 (a) Write down the types of riveted joints and explain with neat sketch. 07
(b) Explain limit of eccentricity and core of a section. Draw "core" for Rectangular 07
and circular section.

