Subject Name: Advanced Strength Of Materials Time:02:30 PM TO 05:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Derive the expression of strain energy due to gradually applied load.
(b) A curved beam, circular in cross-section is subjected to pure bending of 700 Nm . The beam has 20 mm diameter. The mean radius of curvature is 50 mm . The radius of curvature decreases due to bending. Find the maximum bending compressive stress and maximum bending tensile stress.
Q. 2 (a) A weight of 10 kN falls by 30 mm on a collar rigidly attached to a vertical bar 5 m long and $1000 \mathrm{~mm}^{2}$ in section. Find the instantaneous extension of the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(b) A simply supported beam having span 5 m is subjected to a UDL of $20 \mathrm{kN} / \mathrm{m}$ over whole span. The cross-section of beam is rectangular section. The dimension of cross-section is $300 \mathrm{~mm} \times 450 \mathrm{~mm}$. Draw shear stress distribution across the depth of cross-section marking the values at salient points.

OR

(b) Plot shear stress distribution diagram for any three standard sections.
Q. 3 (a) Derive the expression $\tau=\frac{V A \bar{y}}{b I}$ for shear stress variation with usually notations.
(b) A cantilever of 4 m length carrying u.d.1. of $20 \mathrm{kN} / \mathrm{m}$. Find the deflection at free end by using Castigliano's theorem. Take $\mathrm{EI}=$ constant.

OR

Q. 3 (a) Stating assumptions derive Lame's equations to find out the stresses in a thick cylindrical shell.
(b) A cast iron pipe of 40 cm internal diameter and 10 cm thickness carries water under a pressure of $80 \mathrm{~kg} / \mathrm{cm}^{2}$. Determine the maximum and minimum intensities of hoop stress across the section. Also sketch the radial pressure distribution and hoop stress distribution across the section.
Q. 4 (a) Derive an expression for the bending moment in a circular ring which is subjected to a tensile load along the diameter.
(b) A ring made of 20 mm steel bar carries a pull of 20 kN . Calculate the maximum tensile stress and maximum compressive stress in the material of the ring, if the mean radius of the ring is 180 mm .

OR

Q. 4 (a) Explain given failure theories (i) Maximum Principal strain theory (ii) Maximum
strain energy theory.
(b) A member having square cross section is subjected to axial pull of 15 kN and
shear force of 5 kN . Design the cross section of member based on (i) The
maximum principal stress theory (ii) The maximum shear stress theory for a
member elastic limit in axial tension is 250MPa, Poisson's Ratio $=0.3$ and Factor
of safety $=2.5$.
Q. 5 (a) A steel flywheel rim of mean 4 m is uniformly rotating so that the maximum hoop stress in the material is $8 \mathrm{~N} / \mathrm{mm}^{2}$. Find the angular speed in r.p.m. Neglect the arm effect.
(b) Derive the equation of shear stress, bending stress, deflection and angular rotation for open helical spring.

OR

Q. 5 (a) Using Castigliano's theorem, calculate the propped reaction for the beam as shown in Fig.1. Take EI as constant.
(b) A laminated steel spring simply supported at ends with span of 0.8 m is centrally loaded with a load of 8 kN . The central deflection under the above load is not to exceed 50 mm and the maximum stress is to be $400 \mathrm{~N} / \mathrm{mm}^{2}$, determine; (i) width of plate (ii) thickness of plate (iii) number of plates (iv) the radius to which plates should be bent so that the spring become straight under the given 8 kN load. Assume width $=10 \times$ thickness and $\mathrm{E}=200 \mathrm{GPa}$.
$* * * * * * * * * * * * *$

Fig. 1

