FirstRanker.com

www.FirstRanker.com

Subject Name: Kinematics And Dynamics Of Machines			
Su Tii Inst	ne:0	2:30 PM TO 05:00 PM Total Marks: 70	
	1. 2. 3.	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a) (b)	Explain different types of kinematic pairs with suitable examples. Explain different types of gear trains with suitable sketches.	07 07
Q.2	(a) (b)	Explain different types of followers with neat sketches. What is velocity of rubbing? Explain it for a four bar chain mechanism. OR	07 07
	(b)	Explain different types of vibration with suitable sketches.	07
Q.3	(a) (b)	Explain different types of pulleys with neat sketches. Sketch & explain various inversions of four bar chain mechanism.	07 07
Q.3	(a)	Derive a relation for minimum number of teeth on gear wheel and the pinion to	07
	(b)	By using Klein's construction method, explain the procedure to determine velocity and acceleration of a slider crank mechanism.	07
Q.4	(a) (b)	Explain different types of cams with neat sketches. Explain the effect of gyroscopic couple on Naval ship during steering, pitching and rolling.	07 07
Q.4	(a) (b)	Explain working of pantograph mechanism with suitable diagram. Draw displacement, velocity and acceleration diagram for SHM and constant velocity motion of the follower.	07 07
Q.5	(a) (b)	Explain static balancing and dynamic balancing. Derive the relation, $T1/T2 = e^{\mu\theta}$ for a flat belt drive.	07 07
Q.5	(a)	Draw the profile of a cam operating a knife-edge follower having a lift of 30 mm. The cam raises the follower with SHM for 1500 of the rotation followed by a period of dwell for 600 .The follower descends for the next 1000 rotation of the cam with uniform velocity, again followed by a dwell period. The cam rotates at a uniform velocity of 120 rpm and has a least radius of 20 mm	07
	(b)	Derive expressions for the exact and approximate lengths of belt in an open belt drive.	07

1