GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019** | Date: 03/06/2019 | |------------------| | | **Subject Name: Computational Fluid Dynamics II** | Time: 02:30 PM TO 05:00 PM | Total Marks: 70 | |----------------------------|-----------------| | | i otti mains. | ## **Instructions:** 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. | Q.1 | .1 (a) What are the various boundary conditions? | | | | |------------|--|---|-----------|--| | | (b) | Explain (1) Symmetry & (2) Periodic boundary conditions. | 04 | | | | (c) | Explain steps involved in solving finite volume method for one | 07 | | | | | dimensional steady state diffusion problem. | | | | Q.2 | (a) | What is the full form of SIMPLE, SEIMPL-R & PISO? | 03 | | | | (b) | Explain Staggered Grid. | 04 | | | | (c) | Explain SIMPLE algorithm in detail. | 07 | | | | | OR | | | | | (c) | Compare SIMPLE, SIMPLE-R and SIMPLE-C. | 07 | | | Q.3 | (a) | Why pressure velocity coupling is required in the solution of Incompressible flow problems. | 03 | | | | (b) | What is TDMA? Explain in detail. | 04 | | | | (c) | Explain PISO algorithm in detail. | 07 | | | | (C) | OR | 07 | | | Q.3 | (a) | Why under-relaxation is required in SIMPLE? | 03 | | | Q.C | (b) | State the need of Upwind scheme over the central difference | 04 | | | | (2) | scheme. | • | | | | (c) | Write a note on Beam and Warming method. | 07 | | | Q.4 | (a) | Draw 2D grid used for discretization problem and also write | 03 | | | | . | general discretized equation for interior nodes. | | | | | (b) | Solve FVM for steady one dimensional convection and | 04 | | | | (.) | diffusion problem | 07 | | | | (c) | What are the general properties of discretizationschemes? OR | 07 | | | ΩA | (a) | | 03 | | | Q.4 | (a)
(b) | How Finite Volume Method Works? Explain in brief. Explain Crank-Nicolson Scheme for the FVM for unsteady heat | 03
04 | | | | (D) | conduction problem | 04 | | | | (c) | Explain how central differencing schemes works? | 07 | | | 0.5 | , , | | | | | Q.5 | (a) | Explain supersonic viscid flow over the flat plate. | 03 | | | | (b) | Explain different boundary conditions for supersonic viscid flow | 04 | | | | (c) | over the flat plate. Explain flow chart for Mac-Cormark subroutine. | 07 | | | | (C) | OR | 07 | | | Q.5 | (a) | How multidimensionality does make the solution more | 03 | | | ~ | (41) | difficult? | 00 | | | | (b) | Explain 2 nd order upwind schemes. | 04 | | | | (c) | Write a note on High Resolution schemes. | 07 | | | | | | | | *****