

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019

Date: 03/06/2019

Subject Name: Computational Fluid Dynamics II

Time: 02:30 PM TO 05:00 PM	Total Marks: 70
	i otti mains.

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	.1 (a) What are the various boundary conditions?			
	(b)	Explain (1) Symmetry & (2) Periodic boundary conditions.	04	
	(c)	Explain steps involved in solving finite volume method for one	07	
		dimensional steady state diffusion problem.		
Q.2	(a)	What is the full form of SIMPLE, SEIMPL-R & PISO?	03	
	(b)	Explain Staggered Grid.	04	
	(c)	Explain SIMPLE algorithm in detail.	07	
		OR		
	(c)	Compare SIMPLE, SIMPLE-R and SIMPLE-C.	07	
Q.3	(a)	Why pressure velocity coupling is required in the solution of Incompressible flow problems.	03	
	(b)	What is TDMA? Explain in detail.	04	
	(c)	Explain PISO algorithm in detail.	07	
	(C)	OR	07	
Q.3	(a)	Why under-relaxation is required in SIMPLE?	03	
Q.C	(b)	State the need of Upwind scheme over the central difference	04	
	(2)	scheme.	•	
	(c)	Write a note on Beam and Warming method.	07	
Q.4	(a)	Draw 2D grid used for discretization problem and also write	03	
	.	general discretized equation for interior nodes.		
	(b)	Solve FVM for steady one dimensional convection and	04	
	(.)	diffusion problem	07	
	(c)	What are the general properties of discretizationschemes? OR	07	
ΩA	(a)		03	
Q.4	(a) (b)	How Finite Volume Method Works? Explain in brief. Explain Crank-Nicolson Scheme for the FVM for unsteady heat	03 04	
	(D)	conduction problem	04	
	(c)	Explain how central differencing schemes works?	07	
0.5	, ,			
Q.5	(a)	Explain supersonic viscid flow over the flat plate.	03	
	(b)	Explain different boundary conditions for supersonic viscid flow	04	
	(c)	over the flat plate. Explain flow chart for Mac-Cormark subroutine.	07	
	(C)	OR	07	
Q.5	(a)	How multidimensionality does make the solution more	03	
~	(41)	difficult?	00	
	(b)	Explain 2 nd order upwind schemes.	04	
	(c)	Write a note on High Resolution schemes.	07	
