FirstRanker.com

www.FirstRanker.com

Enrolwww.PfrstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION – SUMMER 2019

Subject Code: 2150307

Subject Name: Digital Signal Processing

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Date: 17/06/2019

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give the statement of "Sampling Theorem". Explain briefly the errors 03 arises during sampling process.
 - (b) Justify the statement giving mathematical proof "Any signal can be expressed using summation of two signal parts where one part is even signal and the other part is odd signal".
 - (c) Define Signal Processing. Differentiate between Analog signal 07 processing and Digital signal processing, and also list out the applications of Digital Signal Processing.

Q.2	(a)	State the Properties of Z – Transform.	03
	(b)	Define following terms:	04
		1. Convolution 2. Correlation 3. Quantization 4. Aliasing	
	(c)	Determine Z – Transform of following sequence:	07

- 1. $x(n) = \{1, 2, 4, 5, 0, 7\}$
- 2. $x(n) = \{1, 2, 4, 5, 0, 7\}$

OR

(c) Obtain Inverse Z – Transform of following function using PFE method 07 and also comment on its ROC

$$X(Z) = \frac{1}{(Z-1)(Z-3)}$$

Q.3	(a)	Enlist the properties of DFT with necessary mathematical equation.	03
	(b)	Compute Linear convolution of following given sequence using	04
		mathematical method	
		$\mathbf{x}(\mathbf{n}) = \{1, 1, 1, 1\} \& \mathbf{h}(\mathbf{n}) = \{1, 1, 1, 1\}$	
	(c)	Calculate 8 point DFT of:	07
		$\mathbf{x}(\mathbf{n}) = \{1, 2, 1, 2\}$	
		OR	
Q.3	(a)	Write short note on Goertzel algorithm.	03
	(b)	Determine $\mathbf{r}_{xx} \& \mathbf{r}_{xy}$ for following sequences:	04
		$x(n) = \{1, 1, 0, 1\}$ & $y(n) = \{4, -3, -2, 1\}$	
		t t	
	(c)	Explain radix – $N/2$ DIT FFT algorithm with necessary diagram.	07

~ ~

Fig.4rankar's Explain in brief the Transfranker.com giving one example. 04

Develop Direct form – II realization of following system: **(b)**

$$H(Z) = \frac{3 + 3.6 Z^{-1} + 0.6 Z^{-2}}{1 + 0.1 Z^{-1} - 0.2 Z^{-2}}$$

(c) Design a linear phase FIR low pass filter of seventh order with cutoff 07 frequency 1 rad/sec using rectangular window.

OR

- State the difference between Cascade and Parallel realization of digital **Q.4 (a)** 03 system giving suitable example.
 - Obtain Direct form I realization of following system **(b)**

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-1)$$

(c) Determine transfer function of digital filter using Impulse Invariance 07 method at 5Hz sampling frequency for given below H(s),

$$H(s) = \frac{2}{(s+1)(s+2)}$$

Q.5	(a) (b)	Compare IIR filter and FIR filter. Explain detection of Alpha waves, Beta waves and Gamma waves	03 04
	(c)	Explain IIR filter design using Bilinear Z – Transform method. OR	07
Q.5	(a)	Explain mapping of s – plane and Z – plane with neat diagram.	03
	(b)	Explain in brief cardiac arrhythmias detection.	04
	(c)	What is windowing? Explain in detail the process of converting IIR	07

04