(b) State and Explain Fick's law of diffusion?

(c) Ammonia gas (A) diffuses through nitrogen gas (B) under steady state 07 conditions with nitrogen non-diffusing. The partial pressure of A at location is 1.5 x 10^4 Pa and that at location 2 is 5 x 10^3 Pa the location

		1.5 x 10° Pa and that at location 2 is 5 x 10° Pa. the location 1 and 2 are 15 cm apart. The total pressure is 1.103×10^5 Pa and temperature is 298 K. calculate the flux of diffusion of ammonia. Also calculate flux of diffusion for equimolar counter diffusion assuming that nitrogen is also diffusing. Take diffusivity at prevailing conditions are 2.30 x 10^{-5} m ² /s.	
Q.2	(a)	Define N and J type flux. What is the difference between N and J?	03
	(b)	For equimolar counter diffusion show that $D_{AB} = D_{BA}$	04
	(c)	Explain the film theory for mass transfer co-efficient.	07
		OR A	
	(c)	Explain molecular diffusion in gases in detail. Also discuss steady state	07
		diffusion of A through non diffusing B.	
03	(a)	State characteristics of various types of packing	03
Q.S	(a)	D it it is for the literation of the literation	03
	(D)	Describe the working of wetted wall tower.	04
	(c)	A packed tower is designed to recover 98% CO ₂ from a gas mixture containing	07
		10% CO ₂ and 90% by volume air using water. The equilibrium relation used is	
		$y' = 14y'$, where $y' = ka^{2}CO(ka dry air and y' = ka CO(ka water. The water$	

y' = 14x', where, $y' = kg' CO_2/kg$ dry air and $x' = kg CO_2/kg$ water. The water to gas rate is kept 30% more than minimum value. Calculate actual mole ratio of water to solute free gas.

OR

- What is minimum liquid gas ratio in case of gas absorption? **O.3** (a) 03 State selection criteria for solvent in extraction. 04 **(b)** Define F-type and k-type mass transfer coefficients. Also derive the 07 (c) relationship for steady state equimolar counter diffusion between F and k type coefficients. Write short note on Absorption factor. 03 Q.4 (a) (b) Define: (i) Weeping (ii) Dumping (iii) Flooding (iv) Tray efficiency 04
 - 150 kg of nicotine-water solution containing 1% nicotine is to be extracted (c) 07 with 250 kg of kerosene at 20°C. Water and kerosene are essentially immiscible in each other. Determine the % extraction of nicotine after single stage. The equilibrium relationship is $Y^* = 0.798X$, where X and Y^* are expressed as kg nicotine/kg kerosene and kg nicotine/kg water respectively.

Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019 Date: 06/06/2019

Subject Code: 2150501

Subject Name: Mass Transfer Operation - I

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

0.1 (a) Define Diffusivity and state its assumptions for penetration.

3. Figures to the right indicate full marks.

www.FirstRanker.com

Total Marks: 70

MARKS 03

04

1

www.FirstRanker.com

OR

		ŬŔ.	
Q.4	(a)	Outline the industrial applications of leaching	03
-	(b)	How the height of absorption column is determined?	04
	(c)	Differentiate between Packed Towers and Tray Towers.	07
Q.5	(a)	Define HTU, NTU and give its significance.	03
	(b)	Discuss the concept with principle of crystallization.	04
	(c)	Explain selection criteria for choice of solvent in case of gas absorption.	07
		OR	
Q.5	(a)	Define selectivity of solvent used in liquid extraction. Draw a neat sketch of the Shanks system for countercurrent multiple contact	03
	(b)	State and discuss the various techniques for achieving super saturation with suitable example.	04
	(c)	Explain construction and working of Swenson-Walker Crystallizer with the help of a neat sketch.	07

www.firstRanker.com