

www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – SUMMER 2019

Subject Code: 2150503

Date: 31/05/2019

Subject Name: Chemical Engineering Thermodynamics - II Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss the phase rule and Duhem's theorem.
 - (b) Derive the expression of vapor composition at equilibrium using flash 04 vaporization.
 - (c) Derive the equation for criteria for phase equilibrium in terms of chemical 07 potential for a mixture of N components and π phases.
- Q.2 (a) At 303 K the vapour pressures of benzene (1) and toluene (2) are 15.75 kPa and 4.89 kPa respectively. Determine the partial pressure and composition of the benzene vapour in equilibrium with a liquid mixture consisting of equal weight of the two components.
 - (b) A 30 mol% methanol-water solution is to be prepared. How many cubic meters of pure methanol (molar volume 40.727 x 10^{-6} m³/mol) and pure water (molar volume 18.068 x 10^{-6} m³/mol) are to be mixed to prepare 2 m³ of the desired solution? The partial molar volumes of methanol and water in 30% solution are 38.632 x 10^{-6} m³/mol and 17.765 x 10^{-6} m³/mol respectively.
 - (c) Define fugacity coefficient. Discuss any two methods to evaluate fugacity 07 coefficient in details.

OR

- (c) Water (1)/hydrazine (2) system forms an azeotrope containing 58.5 mol% 07 hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapor composition for a solution containing 20 mol% hydrazine. The relative volatility of water with reference to hydrazine is 1.6 and may be assume to remain constant in the temperature range involved. Vapor pressure of hydrazine at 393 K is 124.76 kPa.
- **Q.3** (a) Derive the Margules equations from the following expression:

03

$$\frac{G^{E}}{x_{1}x_{2}RT} = A_{21}x_{1} + A_{12}x_{2}$$

- (b) Define partial molar properties and explain any one method in detail for **04** evaluation of partial molar properties.
- (c) The following values refer to the Wilson parameters for the system of acetone (1)/water (2): $a_{12} = 1225.31$ J/mol, $a_{21} = 6051.01$ J/mol, $V_1 = 74.05 \times 10^{-6}$ m³/mol and $V_2 = 18.07 \times 10^{-6}$ m³/mol. The vapour pressures are given by the equations:

$$\ln P_1^{sat} = 14.3915 - \frac{2795.817}{T - 43.198}$$
 and $\ln P_2^{sat} = 16.262 - \frac{3799.887}{T - 46.854}$

where p_i^{sat} is in kPa and T is in K. Calculate the equilibrium pressure and composition of vapour in equilibrium with a liquid of composition $x_1 = 0.43$ at 349 K.

OR

δi₅st	ran k	Discuss the area test for checking the oppsizency of experimental relation con	n03		
	(b)	The experimental pressure-volume data for benzene at 675 K from a very low			
		pressures up to 75 bar may be approximated by the equation $V = 0.0554(1/P - 0.0046)$ Where V is in m ³ /mal and measure D is in her. What is the fugarity of			
		benzene at 1 bar and 675 K?			
	(c)	What is gamma-phi formulation of VLE? Draw block diagrams for the BUBL	07		
		P and DEW P calculations. Write all necessary equations.			
Q.4	(a)	Write a short note on group contribution methods.	03		
	(b)	Define azeotrope and explain the minimum boiling and maximum boiling azeotropes with suitable examples.			
	(c)	Prove "Henry's law applies to a species as it approaches infinite dilution in a	07		
		binary solution, and the Gibbs/Duhem equation ensures the validity of the			
		Lewis/Randall rule for the other species as it approaches purity.			
		OD			

Q.4 (a) Explain the Lewis-Randall rule and its significance. 03

- Write a brief note on retrograde condensation and its application. 04 **(b)**
- Using fundamental properties relations establish the expression of standard 07 (c) Gibbs free energy change of chemical reaction as a function of thermodynamic equilibrium constant.
- Q.5 Write down Raoult's Law and Henry's Law explaining each term associated 03 (a) with them with their applicability.
 - Explain T-x-y diagram for partial miscible system. **(b)**
 - (c) For an ideal gas, the exact mathematical expressions can be developed for the 07 effect of T and P on the reaction co-ordinate at equilibrium. For conciseness we

let $\prod (y_i)^{v_i} = K$. Then we can write the mathematical relations:

$$\left(\frac{\partial \varepsilon_e}{\partial T}\right)_p = \left(\frac{\partial K_y}{\partial T}\right)_p \frac{d\varepsilon}{dK_y} \text{ and } \left(\frac{\partial \varepsilon_e}{\partial T}\right)_T = \left(\frac{\partial K_y}{\partial T}\right)_T \frac{d\varepsilon_e}{dK_y}$$

Using above equations, show that

$$i)\left(\frac{\partial \varepsilon_e}{\partial T}\right)_P = \frac{K_y}{RT^2} \frac{d\varepsilon}{dK_y} \Delta H^0 \quad \text{and} \quad ii)\left(\frac{\partial \varepsilon_e}{\partial T}\right)_T = \frac{K_y}{P} \frac{d\varepsilon_e}{dK_y} (-v)$$

OR

- 03 (b) The ammonia synthesis reaction written as: $0.5 \text{ N}_{2(g)} + 1.5 \text{ H}_{2(g)} \rightarrow \text{NH}_{3(g)}$ with 04 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\mathcal{E}_{e} = 1 - (1 + 1.299 \text{KP})^{-0.5}$
- (c) Estimate the equilibrium constant at 1000 K and 0.1 MPa for the reaction : $CO_{2(g)} + H_{2(g)} \rightarrow CO_{(g)} + H_2O_{(g)}$ taking into account the variation of ΔH° with temperature.

Component	а	$b \times 10^3$	e ×10 ⁻⁵	ΔG^{o}_{298}	ΔH^{o}_{298}
				(J/mol)	(J/mol)
CO_2	45.369	8.688	-9.619	-394359	-393509
H_2	27.012	3.509	0.690	-	-
СО	28.068	4.631	-0.258	-137169	-110525
H_2O	28.85	12.055	1.006	-228572	-241818

07

04