www.FirstRanker.com

www.FirstRanker.com

Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019 Subject Code: 2150608 Date: 03/06/2019

Subject Name: Structural Analysis-II Time: 02:30 PM TO 05:00 PM

Total Marks: 70

- **Instructions:**
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.

Q-1.	(a)	State and explain Castigliano's first theorem.	03
	(b)	Using Castigliano's first theorem find deflection at free end of cantilever beam subjected to point load at free end.	04
	(c)	Compute support reactions of beam shown in fig. 1 applying Castigliano's theorem.	07
Q-2.	(a)	Enlist steps of unit load method to analyse indeterminate structures.	03
	(b)	Find the joint displacements at C of plane frame shown in fig.2 using unit load method.	04
	(c)	Analyse plane frame shown fig.3 by unit load method.	07
		OR	
	(c)	Find the joint displacement of a plane truss shown in fig.4 using unit load method.	07
Q-3.	(a)	Write assumptions made in slope deflection method.	03
	(b)	Determine the support moments using slope deflection method for the continuous girder shown in fig. 5.	04
	(c)	Determine the support moments using moment distribution method for the beam as shown in fig. 6. Also draw Bending Moment diagram.	07
		OR	
Q-3.	(a)	Explain stiffness factor and Distribution factor in Moment distribution method.	03
	(b)	Determine the support moments using moment distribution method for the continuous girder shown in fig. 5.	04
	(c)	Determine the support moments using slope deflection method for the beam as shown in fig. 6. Also draw Bending Moment diagram.	07
Q-4.	(a)	State and explain Muller Breslau principle for influence line.	03
	(b)	Draw qualitative shapes of influence lines for reactions in two bay- two storeyed fixed based portal frame.	04
	(c)	Draw influence line diagram for all reactions of propped cantilever having span 12m. Take interval of ordinate 2m.	07
		OR	

FirstRanker.com

www.FirstRanker.com

Q-4.	(a)	Explain the use of influence line diagram with a example.	03
	(b)	A simply supported beam of span 32 m is loaded by train of six wheel loads each of equal magnitude 6 kN and separated by 2m distance. Calculate the maximum positive and negative shear force.	04
	(c)	Draw influence line diagrams of reaction at B (R_B) and reaction at C (R_c) for a continuous beam ABC with both span length of 8 m having interval of 2 m using Muller Breslau principle.	07
Q-5.	(a)	How size of flexibility matrix is decided?	03
	(b)	Explain D_Q , D_{QL} , F, and Q in flexibility method.	04
	(c)	Solve beam shown in fig.7 by flexibility matrix method.	07
		OR	
Q-5.	(a)	Write assumptions made in matrix method of structural analysis.	03
	(b)	Explain A _D , A _{DL} , S, and D in stiffness method.	04
	(c)	Solve plane truss shown in fig.4 by stiffness method.	07

www.firstRanker.com

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com