

Seat No.: _____ Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2150610	Date: 06/06/2019
subject court <u>-1</u> coolo	20000001202

Subject Name: Advanced Structural Analysis

Time: 02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	3.	Figures to the right indicate full marks.	
			MARKS
Q.1	(a)	Write the steps of Flexibility method of analysis.	03
	(b)	Explain term collapse load.	04
	(c)	Differentiate between stiffness method and flexibility method.	07
Q.2	(a)	Write the steps of Stiffness method of analysis.	03
		Calculate the shape factor for the section shown in Figure no.1.	04
	(c)	Explain types of domes with neat sketches and state their uses.	07
		OR	
	(c)	Analyze the typical spherical dome subjected to point load at crown.	07
Q.3	(a)	A propped cantilever beam has a uniform section, span l and flexural	03
		rigidity EI. What is the stiffness coefficient corresponding to rotation	
		of the propped end?	
	(b)	For a given beam shown in figure no.2 that F and S matrices are	04
		reciprocal to each other or prove that $F \times S = \text{unit matrix}$.	
	(c)	Explain with neat sketches "Stresses generated in Conical Dome".	07
0.0		OR	0.2
Q.3		Explain in brief the methods of Plastic analysis.	03
	` '	List the essential features of stiffness methods.	04
	(c)	Analyze the frame shown in figure no.3 and draw B.M. diagram. EI=	07
		constant.	0.0
Q.4		Define the flexibility coefficient fij and stiffness coefficient sij.	03
	(b)	A roof of a hall having diameter 20 m is to be covered by a conical	04
		dome of 100 mm thickness and 4 m rise. Assuming live load and other	
		loads as 1.5 kN/m ² , calculate stresses in the dome.	
	(c)	A spherical dome with a span of 15 m and central rise of 3 m has all	07
		inclusive load of 10kN/m ² . Calculate all the stresses at the mid height.	
		OR	
Q.4	(a)	Differentiate between Force Method and Displacement Method of	03
		analysis.	
	(b)	An ISLB 300 section is used as a simply supported beam of span 5 m.	04
		find the shape factor of the beam section. If the beam carries a point	
		load of 80 kN at mid span, find the load factor. Take fy=250 N/mm ² .	

www.FirstRanker.com

	(c)	A spherical dome with 20 m span and 6 m central rise has an opening of 4 m horizontal diameter at top. If all inclusive udlof 6 kN/m ² is acting on it, calculate the maximum value of hoop tension/compression in top and bottom ring beams.	U7
Q.5	(a)	State basic assumptions made in the "Plastic theory".	03
	(b)	Calculate the shape factor for a square section arranged as diamond shape having size of 100 mm and x axis passing through one of the diagonals.	04
	(c)	Analyze the beam ABC fixed at A and supported on rollers at B and C, as shown in figure no.4 EI for each span is indicated in the figure OR	07
Q.5	(a)	Explain term load factor.	03
	` ′	Enlist advantages and disadvantages of plastic design.	04
	(c)	A fixed beam of 6 m span carried a uniformly distributed load of 175 kN/m over the left half of the span. Determine the fully plastic moment for the beam. Also calculate plastic section modulus required. fy=250MPa.	07

FIGURE NO.1 (Q-2b)

FIGURE NO.2 (Q-3b)

MM.
