

Enrol	ment	No.	

GUJARAT TEVYETNÜENGICOML UNIVERSISTRANKER.com

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2150703 Date: 06/06/2019

Subject Name: Analysis and Design of Algorithms

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	What is an algorithm? How it differ from flowchart?	03
	(b)	Give difference of dynamic programming and divide-and-	04
	. ,	conquer method.	
	(c)	Explain Asymptotic notation. Arrange the growth rate of 2 ⁿ , n ² ,	07
	(c)	1, log n, n logn, 3 ⁿ and n in increasing order of growth.	0,
Q.2	(a)	Differentiate greedy and dynamic programming.	03
Q.2	(b)	Find out the Θ -notation for the function: $f(n)=27n^2+16n$.	04
	(c)	What is recurrence? Explain recursion-tree method with suitable	07
	(c)	example.	07
		OR	
	(c)	Write the Master theorem. Solve following recurrence using it.	07
	(-)	(i) $T(n)=9T(n/3)+n$ (ii) $T(n)=3T(n/4)+nlgn$	
Q.3	(a)	Use Iteration method to solve recurrence $T(n) = T(n-1) + 1$, here	03
· ·	()	$T(1)=\Theta(1)$.	
	(b)	Explain general characteristics of greedy algorithms.	04
	(c)	Using dynamic programming find out the optimal sequence for	07
		the matrix chain multiplication of A4x10, B10x3, C3x12, D12x20 and	
		E _{20x7} matrices.	
		OR C	
Q.3	(a)	Write the best and worst running time of Insertion sort	03
		algorithm. Why it differ?	
	(b)	What are the steps for dynamic programming? Explain principal	04
		of optimality.	
	(c)	Determine LCS of {1,0,0,1,0,1,0,1} and {0,1,0,1,1,0,1,1,0}	07
Q.4	(a)	What is string-matching problem? Define valid shift and invalid	03
	(b)	shift.	0.4
	(b)	Define P, NP, NP-complete and NP-hard problems. Explain 0(1 knapsack using suitable example.	04 07
	(c)	OR	07
Q.4	(a)	Write pseudo-code for Naïve-String-Matching algorithm.	03
Ų.Ŧ	(b)	Define spanning tree and MST. How Krushkal's algorithm is	04
	(0)	different from Prim's algorithm.	••
	(c)	Explain fractional knapsack problem with example.	07
Q.5	(a)	Define graph, complete graph and connected graph.	03
•	(b)	Differentiate BFS and DFS.	04
	(c)	Write and explain Dijkastra algorithm with example.	07
	. ,	OR	
Q.5	(a)	Explain "P = NP?" problem.	03
	(b)	Write just steps for Backtracking and Branch-and-Bound	04
		algorithms.	
	(c)	Explain travelling salesman problem. Prove that it is NP	07
		complete problem.	
