

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (SPFU) EXAMINATION - SUMMER-2019Subject Code: MTH002Date: 010/06/2019Subject Name: Ordinary Differential EquationTotal Marks: 70Time: 10:30 AM TO 01:00 PMTotal Marks: 70Instructions:Total Marks: 70			19 70
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	I. Form the Differential equation from the solution $y = c_1 \cos x + c_2 \sin x$. II. Verity that $y = e^x (a \cos x + b \sin x)$ is a solution of $y'' - 2y' + 2y = 0$.	03 04
	(b)	I. Solve $2xy dx + x^2 dy = 0$.	03
		II. Solve the I.V.P. : $xy' + y = 0$, $y(2) = -2$	04
Q.2	(a)	Test the exactness and solve	07
	(b)	$[(x + 1)e^{x} - e^{y}]dx - xe^{y}dy = 0; y(1) = 0$ I Find the Differential equation of the orthogonal trajectory to $y = cx^{2}$	03
		II. Find the orthogonal trajectories of the family of Cardioids $r = a(1 + \cos \theta)$, where a is parameter.	04
Q.3	(a)	Solve the I.V.P.: $\frac{dy}{dx} + y = x$; $y(0) = 0$	07
	(b)	Solve $xy' = y^2 + y$	07
Q.4	(a)	Verify that the functions $x^{-\frac{1}{2}}$ and $x^{\frac{3}{2}}$ form a basis of solutions of $4x^2y'' - 3y = 0$. Also write general solution of the given equation.	07
	(b)	I. $f(x) = e^x$ and $g(x) = e^{-x}$ are linearly independent or dependent?	02
		II. If $y = e^x (c_1 \cos x + c_2 \sin x)$ find the Wronskian $W(y_1, y_2)$.	02
		III. Find the General Solution of $y' + y' - 2y = 0$.	03
Q.5	(a)	Solve the I.V.P. $y'' + 4y = 8e^{-2x} + 4x^2 + 2$; $y(0) = 2, y'(0) = 2$.	07
	(b)	Using method of undetermined coefficients, solve $y'' + 4y = 8 x^2$.	07
Q.6	(a)	Solve $y'' - 3y' + 2y = e^x$	07
	(b)	Find the roots of the indicial equation to $x^2y'' + xy' - (2 - x)y = 0$ by Frobenius method.	07
Q.7	(a)	Find the series solution of $(x^2 + 1)y'' + xy' - xy = 0$ near $x = 0$.	07
	(b)	Find the series solution of $y'' = 2y'$ in power of x.	07
