GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (SPFU) EXAMINATION - SUMMER-2019

Subject Code: mTH002
Date: 010/06/2019
Subject Name: Ordinary Differential Equation
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) I. Form the Differential equation from the solution $y=c_{1} \cos x+c_{2} \sin x$. 03
II. Verity that $y=e^{x}(a \cos x+b \sin x)$ is a solution of $y^{\prime \prime}-2 y^{\prime}+2 y=0$. 04
(b) I. Solve $2 x y d x+x^{2} d y=0 . \quad 03$
II. Solve the I.V.P. : $x y^{\prime}+y=0, y(2)=-2 \quad 04$
Q. 2 (a) Test the exactness and solve 07
$\left[(x+1) e^{x}-e^{y}\right] d x-x e^{y} d y=0 ; y(1)=0$
(b) I. Find the Differential equation of the orthogonal trajectory to $y=c x^{2} \quad \mathbf{0 3}$
II. Find the orthogonal trajectories of the family of Cardioids 04 $r=a(1+\cos \theta)$, where a is parameter.
Q. 3 (a) Solve the I.V.P. : $\frac{d y}{d x}+y=x ; y(0)=0 \quad 07$
(b) Solve $x y^{\prime}=y^{2}+y \quad 07$
Q. 4 (a) Verify that the functions $x^{-\frac{1}{2}}$ and $x^{\frac{3}{2}}$ form a basis of solutions of 07 $4 x^{2} y^{\prime \prime}-3 y=0$. Also write general solution of the given equation.
(b) I. $f(x)=e^{x}$ and $g(x)=e^{-x}$ are linearly independent or dependent? 02
II. If $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ find the Wronskian $W\left(y_{1}, y_{2}\right) . \quad 02$
III. Find the General Solution of $y^{\prime \prime}+y^{\prime}-2 y=0$. 03
Q. 5 (a) Solve the I.V.P. $y^{\prime \prime}+4 y=8 e^{-2 x}+4 x^{2}+2 ; y(0)=2, y^{\prime}(0)=2$. 07
(b) Using method of undetermined coefficients, solve $y^{\prime \prime}+4 y=8 x^{2}$. $\mathbf{0 7}$
Q. 6 (a) Solve $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x} 07$
(b) Find the roots of the indicial equation to $x^{2} y^{\prime \prime}+x y^{\prime}-(2-x) y=0 \quad 07$ by Frobenius method.
Q. 7 (a) Find the series solution of $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0$ near $x=0$. 07
(b) Find the series solution of $y^{\prime \prime}=2 y^{\prime}$ in power of x.
