FirstRanker.com

www.FirstRanker.com

Enrowww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – SUMMER 2019

Subject Code: 2151903

Subject Name: Fluid Power Engineering

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

03

03

Date: 31/05/2019

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Explain the impulse-momentum principle.
 - (b) State the functions of following components of hydro power plant: Trash rack, 04 surge tank, dam and power house.
 - (c) How ships are propelled ? Derive an expression for propulsive work and propulsive efficiency if the water is drawn from an orifice at right angles to the motion of ship.
- **Q.2** (a) State major applications of hydro power plant.
 - (b) Show that the force exerted by a jet of water on an inclined fixed plate in the direction of jet is given by F_x = ρaV²sin²θ
 Where a = Area of the jet, V = Velocity of the jet and θ = Inclination of the plate with the jet.
 - (c) A 80 mm diameter jet having a velocity of 25 m/sec strikes a flat plate, the normal of which is inclined at 45° to the axis of the jet. Find the normal pressure on the plate
 - (i) When the plate is stationary
 - (ii) When the plate is moving with a velocity of 12 m/sec in the direction of jet and away from the jet.

Also determine the power and efficiency of the jet when the plate is moving.

OR

- (c) A jet of water strikes at the centre of a single curved vane moving in the direction of jet with velocity u so that jet velocity relative to vane is (V u). If the outgoing jet makes an angle θ with the entering jet prove that
 - (i) For maximum efficiency V = 3u and

(ii) Maximum efficiency =
$$\frac{8}{27}$$
 (1 + cos θ)

- Q.3 (a) Differentiate between Francis and Kaplan turbine.
 - (b) A Pelton wheel has a mean bucket speed of 10 m/sec with a jet of water flowing at the rate of 800 litres/sec under a head of 32 metres. The bucket deflects the jet through an angle of 165°. Calculate the power given by water to the runner and hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.
 - (c) What is draft tube ? State its functions. With neat diagrams explain salient 07 features of different types of draft tube.

OR

- Q.3 (a) Compare inward flow and outward flow reaction turbine.
 - (b) Define the term specific speed and derive an expression for specific speed of 04 hydraulic turbine.
 - (c) What do you mean by characteristic curves for hydraulic turbines ? Discuss the 07 main characteristic curves.

03

03

- (a) What do you mean by an air vessel ? Explain the function of an air vessel for **Q.4** 03 reciprocating pump. 04
 - Discuss the criteria for selection of pumps. **(b)**
 - 07 (c) Show that the pressure rise in impeller of a centrifugal pump is given by

$$\frac{1}{2g} \left[V_{f_1}^2 - V_{f_2}^2 \csc^2 \beta_2 + u_2^2 \right]$$

where β_2 is the blade angle at outlet . Neglect the friction losses.

OR

- 0.4 Compare screw and scroll compressor. (a)
 - What is pre-whirl ? State its advantages and disadvantages. Draw velocity 04 **(b)** diagrams with and without pre-whirl.
 - A single acting two stage air compressor deals with 4.2 m^3/min of air under 07 (c) atmospheric conditions of 1 bar and 17°C with a speed of 250 rpm. The delivery pressure is 80 bar. Assume complete intercooling, find the minimum power required by the compressor and bore and stroke of the compressor. Assume a piston speed of 210 m/min, mechanical efficiency of 76 % and volumetric efficiency of 82 % per stage. Assume polytropic index of compression in both stages to be n = 1.3 and neglect clearance.

Q.5	(a)	Explain construction and working of direct acting hydraulic lift.	03
	(b)	Differentiate between fluid coupling and fluid torque converter.	04
	(c)	Explain the phenomenon of stalling in axial flow compressor.	07
		OR	
Q.5	(a)	With a neat sketch explain working of centrifugal compressor.	03

- 04 (b) Explain construction and working of simple hydraulic accumulator.
- (c) Explain function, working principle, construction and working of hydraulic 07 jack.

03