GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 110008 Subject Name: Maths - I Time: 10:30 AM TO 01:30 PM Instructions: Date: 06/06/201 Total Marks:			
			otal Marks: 70
	1. 2.	Attempt any five questions.	
Q.1	(a)	(i) Evaluate: $\lim_{x \to 1} (1 - x) \tan \left(\frac{\pi x}{2} \right)$	02
		(ii) Evaluate : $\lim_{x \to 0} \left(\frac{1}{x}\right)^{1-\cos x}$	02
		(iii) Find Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for functions $u=xsiny, v=ysinx$.	03
	(b)	(i) Sketch the region and find the area bounded by ellipse $\frac{x^2}{9} + \frac{y^2}{4}$	= 1. 03
		(ii) Using Lagrange's mean value theorem, prove that $\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2}$	04
Q.2	(a)	(i) Verify Rolle's theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ in $-3 \le x \le 0$	O. 04
		(ii) Find two non-negative numbers whose sum is 9 such that the number and the square of the other is maximum.	product of one 03
	(b)	(i) Prove that $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \frac{1}{2}\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots\right)$.	04
		(ii) Find the absolute maximum and minimum values of interval $[-1,1]$.	$f(x) = \frac{x^3}{x+2} \text{in} \qquad 03$
Q.3	(a)	interval [-1, 1]. (i) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{n^n x^n}{(n+1)^n}$, $x > 0$.	04
		(ii) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$	03
	(b)	(i) Test the convergence of the series: $\frac{1}{2} - \frac{2}{5} + \frac{3}{10} - \frac{4}{17} + \cdots$	04
		(ii) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{n!}{n^n}$	03
Q.4	(a)	(i) Find extreme values of $f(x,y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$ (ii) Find all first and first and second order partial d	
		$f(x,y) = x^2 \sin y + y^2 \cos x. \text{ Hence, verify mixed derivative}$	
	(b)	(i) If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$; show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} =$	= 2sinucos3u. 04
		(ii) If $u = f(x - y, y - z, z - x)$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$	= 0. 0 3

03

www.FirstRanker.com

www.FirstRanker.com

- Sketch the region of integration and evaluate by reversing the order of **07 Q.5** Integration for integral $\int_0^{4a} \int_{\frac{x^2}{2}}^{2\sqrt{ax}} dy dx$
 - (i) Evaluate the integral $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing into polar 04
 - coordinates. (ii) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{x+y} e^z dx dy dz$. 03
- (i) Find directional derivative of $\emptyset = xy^2 + yz^2$ at point (2, -1, 1) in the 04 **Q.6** direction of vector $\hat{i} + 2\hat{j} + 2\hat{k}$.
 - (ii) If $\bar{r} = t^3 \hat{\imath} + (2t^3 \frac{1}{5t^2})\hat{\jmath}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$. 03
 - (b) Evaluate $\int_C \bar{F} \cdot d\bar{r}$, where, $\bar{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$. Where, C is the rectangle **07** in XY-plane bounded by y = 0, x = a, y = b, x = 0.
- (a) Verify Green's theorem for $\oint_C [(x^2 2xy)dx + (x^2y + 3)dy]$. Where, C is the boundary of the region bounded by $y = x^2$ and the line y = x. **Q.7 07**
 - **(b)** (i) Show that 04 $\bar{F} = (y^2 - z^2 + 3xy - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.
 - (ii) Evaluate $\oint_C [e^x dx + 2y dy dz]$ by Stoke's theorem. where, C is the curve 03 ******* $x^2 + y^2 = 4$, z = 2.