

www.FirstRanker.com www.FirstRanker.com

Seat	No.: Enrolment No	
	GUJARAT TECHNOLOGICAL UNIVERSITY	
Sub	BE - SEMESTER-VI(NEW) – EXAMINATION – SUMMER 2019 ject Code:2160104 Date:18/05/2019	
	iect Name:Basic Control Theory	
Tim	e:10:30 AM TO 01:00 PM Total Marks: 70	
Instru	uctions:	
	 Attempt an questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q-1 (a)	Cruise missile control is the example of closed loop system or open loop system. Justify the statement.	03
(b)	Explain the difference between open loop and closed loop system.	04
(c)	Explain the rules for block diagram reduction technique.	07
Q-2 (a)	Explain standard test input signals.	03
(b)	Explain the difference between manmade and natural control system.	04
(c)	Explain Mason's gain formulae in detail.	07
	OR	
Q-2 (c)	Explain steady state error for type-0,1, and 2 system for step, ramp and parabolic.	07
Q-3 (a)	Define transfer function and derive transfer function for RC series ckt.	03
(b)	Explain the steps for plotting the Nyquist plot.	04
(c)	Draw the root locus of the system given as $G(s)=K/s(s+5)$. Also determine the range of K.	07
	OR	
Q-3 (a)	Explain difference between signal flow graph and block diagram reduction method.	03
(b)	Explain different terms of time domain analysis with example.	04
(c)	The characteristic equation of the feedback system is $F(s)=s^4+6s^3+2s^2+5s+10$	07
	Using Routh's Hurwitz criteria determine the stability of the system.	
Q-4 (a)	Explain proportional controller in detail.	03
(b)	Explain the steps to plot the bode plot.	04
(c)	Sketch the root locus of the following system	07
	$\xrightarrow{+}$	

www.FirstRanker.com

www.FirstRanker.com

OR

Q-4 (a)	Explain State space analysis.	03	
(b)	Explain relative stability of closed loop system.	04	
(c)	A unity feedback system has $G(s) = \frac{K/s(s+2)(s+3)}{K(s+2)(s+3)}$	07	
	Using Routh's Hurwitz criteria find the range of K for closed loop system to be stable.		
Q-5 (a)	Explain Integral controller.	03	
(b)	Explain PI controller in detail.	04	
(c)	Explain the difference between modern control theory and conventional control theory.	07	
OR			
Q-5 (a)	Explain derivative controller	03	
(b)	Explain the following terms: proportional band, rate gain and direct action.	04	
(c)	Explain PID controller in detail.	07	

www.firstRanker.com