

www.FirstRanker.com

Enrolment FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019
shiect Code:2160109 Date:16/05/2019

Subject Code:2160109 Subject Name:Theory of Vibration

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks

	3. Figu	res to the right indicate full marks	
			MARKS
Q.1	(a)	Explain Simple Harmonic Motion with an example.	03
C	(b)	Explain the Energy method for vibration analysis.	04
	(c)	Define the following terms:	07
	· /	Degrees of Freedom, Natural Frequency, Node, Damping Ratio,	
		Resonance, Time Period, Damped natural frequency	
Q.2	(a)	Define Damping. Explain Damped and Undamped Vibration.	03
	(b)	Explain series and parallel spring connections.	04
	(c)	Show that for finding natural frequency of a spring mass system, the	07
		mass of the spring can be taken into account by adding one third its	
		mass to the main mass.	
		OR	
	(c)	Determine the natural frequency of torsional pendulum having	07
		following characteristics:	
		Length of the rod: 1 m	
		Diameter of the rod (d): 5 mm	
		Diameter of the rotor (D): 0.2 m	
		Mass of the rotor: 2 kg	
		Modulus of rigidity (G): $0.83 \times 10^{14} \text{ N/m}^2$	
Q.3	(a)	How many ways you can control the vibration?	03
	(b)	Show that in case of a Coloumb damping the reduction in amplitude	04
	()	takes place by an amount of 4F/k in one complete cycle.	
	(c)	Conclude the response of Overdamped, Underdamped and Critically	
	. ,	damped system by solving differential equation of undamped free	07
		vibration with neat sketches.	
		OR	
Q.3	(a)	State the applications of critical damping in real life examples.	03
	(b)	Explain Logarithmic decrement.	04
	(c)	An electric motor is supported on a spring and a dashpot. The spring	07
		has stiffness of 6400 N/m and a dashpot offers resistance of 500 N	
		at a velocity of 4 cm/sec. The unbalanced mass of 0.5 kg rotates at 5	
		cm radius and the total mass of vibratory system is 20 kg. The motor	
		runs at 400 rpm. Determine: Damping factor, amplitude of vibration	
		and phase angle, resonant speed and resonant amplitude, forces	
		exerted by the spring and dashpot on the motor.	
Q.4	(a)	State the role of spring mass and damper in any vibratory system.	03
	(b)	Discuss working of a Vibrometer.	04
	(c)	Derive the solution of equation of motion for forced vibration for	07
		spring mass damper system under the influence of harmonic force.	
		OR	
Q.4	(a)	Show the response of transient and steady state vibration.	03

rstran	ıke(b)s (the working Firstramker. To hometer towns in straining	r.c04m
		frequency of vibration body.	
	(c)	Explain the torsional vibration of two rotor system. Determine the natural frequencies and mode shapes.	07
Q.5	(a)	State the importance of Vibration isolation. Explain different materials used for vibration isolation.	03
	(b)	Explain the working of Vibration absorber with neat sketch.	04
	(c)	Using Lagrange's equation, determine the natural frequency of the system shown in fig. 1.	07
		OR	
Q.5	(a)	Compare the vibration absorber with vibration isolator.	03
	(b)	Explain Rayleigh's method for finding natural frequency of transverse vibration of beams.	04
	(c)	Determine the two natural frequencies of vibration and the ratio of amplitudes of motion m1 & m2 for the two mode of vibration for the system shown in fig.2 Take m1= 1.5 kg , m2= 0.80 kg , k1=k2= 40 N/m .	07

fig.1

fig.2