GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (OLD) EXAMINATION - SUMMER-2019

Subject Code: 110010
Date: 19/06/2019
Subject Name: Mechanics Of Solids
Time: 10:30 AM TO 01:00 PM
Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define the term force. Explain force and forces system 07
(b) Two tensile forces 100 kN and 150 kN acting at a point with an angle 65 degree 07 between them. Find magnitude and direction of the resultant.
Q. 2 (a) Determine magnitude and direction of resultant force of the force system shown in 07fig. 1.(b) Find support reaction for the beam shown in fig. 207
Q. 3 (a) Draw shear force and bending moment diagram for the beam shown in fig.3. 07
(b) Locate centroid of the section shown in fig. 4 07
Q. 4 (a) Explain the pappus-guldinus theorem. 07
(b) A' T ' section has flange $180 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $150 \mathrm{~mm} \times 20 \mathrm{~mm}$. Determine 07 the moment of inertia with respect to centroidal axis.
Q. 5 (a) A steel bar 40 mm in diameter is subjected to a tensile load of 75 kN . The07measured extension on a gauge length of 400 mm is 0.212 mm and change indiameter is 0.0045 mm . Calculate poisson's ratio and the value of ElasticConstants.
(b) A cantilever beam of span 4 m and $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ rectangular sectioncarries uniformly distributed load of $50 \mathrm{kN} / \mathrm{m}$ over entire span. Find themaximum bending stress and draw bending stress distribution diagram.
Q. 6 (a) A Ladder 5 m long restog horizontal ground and place against a smooth vertical at an angle 60 degree with the horizontal. It is on the point of sliding when a man weighing, 1800 N stands on it at a distance 2.5 m along the ladder from foot of the ladder. Calculate the coefficient of friction. Neglect the self weight of ladder.
(b) Derive the equation of normal, tangential, and resultant stress on an inclined plane when body is subjected to direct stresses in two mutually perpendicular directions.
Q. 7 (a) Derive the equation for a volumetric strain of a rectangular body subjected to an axial force in one direction only.
(b) A Circular beam of 120 mm diameter is subjected to a shear force of 25 kN . Calculate the value of maximum shear stress and draw shear stress distribution diagram.

