

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) – EXAMINATION – SUMMER 2019 Subject Code:2160407 Date:16/05/2019 Subject Name:Instrumentation and Control for Bioengineering Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Derive response equation for step change in case of first order system.03(b) Discuss the concept of transfer function.04
 - (c) Define: a. Sensitivity b. Hysteresis c. Measuring lag d. Static Error 07
 e. Dynamic Error f. Reproducibility g. Repeatability
- Q.2 (a) Derive the transfer function for none inter acting multi capacity system.
 (b) Solve the following differential equation by Laplace transform
 07

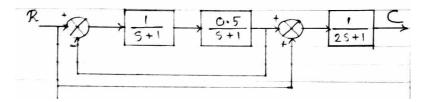
$$\frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 4 + e^{2t} \quad x(0) = 1 \quad x'(0) = 0 \quad x''(0) = -1$$

OR

- (b) Derive the transfer function of Mercury thermometer with suitable assumptions. 07
- Q.3 (a) Explain feedback system with suitable example. 03
 - (b) Explain advantages and disadvantages of higher gain K_C.
 - (c) The transfer function of the second order control system is given as, 07

04

04


07

07

$$G(s) = \frac{16}{1.5s^2 + 2.4s + 6}$$

A step change of magnitude 5 is given in the input variable. Determine, 1) Overshoot 2) Rise time 3) Period of oscillation 4) Maximum value of response

- Q.3 (a) Define damping parameter and give its significance 03
 - (b) Derive the transfer function of mixing process.
 - (c) Find C/R for the given control system

Q.4 (a) Determine the value of K_c for which the system is stable also find the pair 07 of roots for which the system is just unstable

$$G(s) = \frac{K_c}{(s+1)(\frac{s}{2}+1)(\frac{s}{3}+1)}$$

(b) The open loop transfer function of a control system is given as, V(0.5 c + 1)

$$G(s) = \frac{K_c(0.5S+1)}{s(s+1)(s+0.5)}$$

Sketch the root locus diagram of the control system. Indicate open loop poles and zeros, breakaway point, asymptotic lines, the direction in which the loci travel.

www.FirstRanker.com

www.FirstRanker.com

OR

		OK	
Q.4	(a)	Discuss the transfer function for P, PI and PID controller and its merits and demerits.	07
	(b)	Sketch the Bode diagram for a system having transfer function $G(s) = \frac{K_c}{(10s+1)(0.5s+1)}$	07
Q.5	(a)	How is the gauge pressure and absolute pressure measured by liquid manometer?	03
	(b)	Explain the principle of variable head meter for flow measurement with suitable example.	04
	(c)	Explain principle, construction and derive flow equation of venturi meter with neat sketch.	07
Q.5	(a)	Describe various viscosity measurement methods	03
	(b)	Explain bubbler system for liquid level measurement.	04
	(c)	Write a note on Bellows differential pressure element with neat sketch.	07

www.firstRanker.com