

www.FirstRanker.com

Enroll Military Enroll Enroll

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2160506 Date:27/05/2019

Subject Name: Chemical Reaction Engineering - I

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	3.	Figures to the right indicate full marks.	MARKS
Q.1	(a) (b)	Explain: 1) Elementary reaction 2) Molecularity 3) Rate constant. Derive the equation for half-life using overall order of irreversible reaction.	03 04
	(c)	Derive performance equation for steady state plug flow reactor.	07
Q.2	(a)	Derive equation for a unimolecular type first order reaction for constant volume batch reactor using integral method.	03
	(b)	Evaluate quantitatively the behavior of N equal sized mixed flow reactors in series.	04
	(c)	A homogeneous gas reaction A → 3R has a reported rate at 215°C	07

(c) A homogeneous gas reaction A \longrightarrow 3R has a reported rate at 215°C $-r_A = 10^{-2}C_A^{1/2}$, [mol/liter sec] Find the space-time needed for 80% conversion of a 50% A, 50% inert feed to a plug flow reactor operating at 215°C and 5 atm ($C_{Ao} = 0.0625$ mol/liter).

OR

- (c) Explain recycle ratio and derive the performance equation of recycle plug flow reactors.
- Q.3 (a) Explain space time, space velocity and holding time. 03
 - (b) Discuss parallel reaction with example. Also discuss fractional yield, overall yield and selectivity for parallel reaction.
 - (c) Compare the Integral and Differential method of analysis for analyzing reaction kinetics data.

OR

- Q.3 (a) Explain shifting order reaction. 03
 (b) Discuss autocatalytic reaction with conversion-time and rate-
 - **(b)** Discuss autocatalytic reaction with conversion-time and rate-concentration Curves.
 - (c) Discuss optimum temperature progression in detail. 07
- Q.4 (a) Brief the rules for the best arrangement for the ideal reactors. 03
 - (b) Discuss Activation energy and its temperature dependency from Arrhenius Law and Collision Theory.
 - (c) Using given data in Table, calculate the reactor volume V1 and V2 for the mixed-flow sequence in series. when the intermediate conversion is 40% and the final conversion is 80%. The entering molar flow rate is the 0.867 mol/s.

	X	0	0.1	0.2	0.4	0.6	0.7	0.8	
	- r _A	0.0053	0.0052	0.0050	0.0040	0.0025	0.0018	0.00125	

Q.4 (a) Milk is pasteurized if it is heated to 63°C for 30 min, but if it is heated to 74°C it only needs 15 s for the same result. Find the activation energy of this sterilization process.

07

07

Firstr	angger	Show the graphical representation of the person balance equation of the stranker. adiabatic operation.	c 01 m
	(c)	Derive an expression for effects of temperature on heat of reaction from thermodynamics.	07
Q.5	(a)	State the different ways to define the reaction rate	03
	(b)	Discuss batch reactor including its advantages and limitations.	04
	(c)	Discuss qualitative product distribution for irreversible first order in series.	07
		OR	
Q.5	(a)	Discuss variable affecting the rate of reaction.	03
	(b)	Experiments show that the reaction between $H_2(g)$ and $I(g)$ to produce $HI(g)$ proceeds with a rate $(1/2)d[HI]/dt = k[H_2][I_2]$ Suggest a two step mechanism which is consistent with this rate.	04
	(c)	Write short note on 'Searching for reaction mechanism'.	07

Man Filst Banker Colf