GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (OLD) EXAMINATION - SUMMER-2019

Subject Code: 110015
Date: 01/06/2019
Subject Name: Vector Calculus And Linear Algebra
Time: 10:30 AM TO 01:30 PM
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) Solve the following system by Gauss-Jordan elimination.

$$
\begin{aligned}
& 3 x+2 y-z=-15 \\
& 5 x+3 y+2 z=0 \\
& 3 x+y+3 z=11 \\
& -6 x-4 y+2 z=30
\end{aligned}
$$

(ii) Verify Cauchy-Schwarz inequality for the vectors $(-3,1,0)$ and $(2,-1,3)$.
(b)
(i) Find the inverse of $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$.
(ii) For which value of k are $u=(k, k, 1)$ and $v=(k, 5,6)$ orthogonal?
Q. 2 (a) (i) Use Cramer's rule to solve the following system.

$$
\begin{aligned}
& x+2 z=6 \\
& -3 x+4 y+6 z=30 \\
& -x-2 y+3 z=8
\end{aligned}
$$

(ii) Find the rank of the following matrix.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
3 & 6 & 3
\end{array}\right]
$$

(b) (i) Prove that R^{n} is a vector space with the standard operations defined for R^{n}.
(ii) Determine whether the set of all matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is a subspace of M_{22} or not.
Q. 3 (a) (i) Let $v_{1}=(1,2,1), v_{2}=(2,9,0)$ and $v_{3}=(3,3,4)$. Show that the set $\mathbf{0 5}$ $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3}.
(ii) Determine whether the vectors $v_{1}=(-1,1,1), v_{2}=(2,5,0)$ and $v_{3}=(0,0,0)$ of R^{3} are linearly independent or linearly dependent.
(b) (i)Let R^{3} have the Euclidean inner product. Transform the basis 05 $\{(1,1,1),(0,1,1),(0,0,1)\}$ into an orthogonal basis using gram-Schmidt process.
(ii) Find the eigenvalues of A and A^{2} where $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]$.

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(b) (i) Let $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ be vectors in R^{2}. Verify that the weighted Euclidean inner product $\langle u, v\rangle=3 u_{1} v_{1}+2 u_{2} v_{2}$ satisfies the four inner product axioms.
(ii) Let R^{4} have the Euclidean inner product. Find the cosine of the angle θ between the vectors $u=(4,3,1,-2)$ and $v=(-2,1,2,3)$.
Q. 5 (a) (i) Consider the basis $S=\left\{v_{1}, v_{2}\right\}$ for R^{2}, where $v_{1}=(-2,1)$ and $v_{2}=(1,3)$ and let $T: R^{2} \rightarrow R^{3}$ be the linear transformation such that $T\left(v_{1}\right)=(-1,2,0)$ and $T\left(v_{2}\right)=(0,-3,5)$. Find the formula for $T\left(x_{1}, x_{2}\right)$. Using it, find $T(2,-3)$.
(b) Let $T_{A}: R^{6} \rightarrow R^{4}$ be multiplication by $A=\left[\begin{array}{cccccc}-1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7\end{array}\right]$.

Find the rank and nullity of T_{A}.
Q. 6 (a) (i) Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $P(2,1,3)$ in the direction the vector $\bar{a}=\hat{i}-2 \hat{k}$.
(ii)Obtain the reduced row echelon form of the matrix
$A=\left[\begin{array}{ccccc}1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3\end{array}\right]$
(b) (i) Find the gradient of $f(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right) z+\tan ^{-1}(x z)$ at $(1,1,1)$.
(ii)Find the $\operatorname{curl} \overline{\mathcal{F}}$ at the point $(2,0,3)$ where $\bar{F}=z e^{2 x y} \hat{i}+2 x y \cos y \hat{i}+(x+2 y) \hat{k}$.
Q. 7 (a) (i) Prove that $\bar{F}=\left(\hat{y}^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+3 x z^{2} \hat{k}$ is irrotational and find its scalar potential.
(ii) State Divergence theorem.
(b) State Green's theorem and using it, evaluate

$$
\oint_{c} \quad\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y
$$

where C is the boundary of the region bounded by $y^{2}=x$ and $y=x^{2}$.

