FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

CULADAT TECHNOLOCICAL UNIVEDSITY

Su	ıbject	BE - SEMESTER-I &II (OLD) EXAMINATION – SUMMER-2019 Code: 110015 Date: 01/06/2019)	
Subject Name: Vector Calculus And Linear AlgebraTime: 10:30 AM TO 01:30 PMInstructions:			70	
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	(i) Solve the following system by Gauss-Jordan elimination. 3x+2y-z = -15	05	
		5x + 3y + 2z = 0		
		3x + y + 3z = 11		
		-6x-4y+2z = 30 (ii) Verify Cauchy-Schwarz inequality for the vectors (-3,1,0) and (2,-1,3).	02	
	(b)	(i) Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 2 & 0 \end{bmatrix}$.	05	
		(ii) For which value of k are $u = (k, k, 1)$ and $v = (k, 5, 6)$ orthogonal?	02	
Q.2	(a)	(i) Use Cramer's rule to solve the following system. x + 2z = 6 -3x + 4y + 6z = 30	05	
		-x-2y+3z=8 (ii) Find the rank of the following matrix. $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{bmatrix}$	02	
	(b)	(i) Prove that R^n is a vector space with the standard operations defined for R^n .	05	
		(ii) Determine whether the set of all matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a subspace of M or pot	02	
_				
Q.3	(a)	(i) Let $v_1 = (1, 2, 1), v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$. Show that the set $S = \{v_1, v_2, v_3\}$ is a basis for R^3 .	05	
		(ii) Determine whether the vectors $v_1 = (-1,1,1)$, $v_2 = (2,5,0)$ and $v_3 = (0,0,0)$ of R^3 are linearly independent or linearly dependent.	02	

(b) (i)Let R^3 have the Euclidean inner product. Transform the basis 05 $\{(1,1,1),(0,1,1),(0,0,1)\}$ into an orthogonal basis using gram-Schmidt process.

(ii) Find the eigenvalues of A and
$$A^2$$
 where $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$. **02**

FirstRanker.com δi4str(a) & Determine the algebraic and grant the indicative of www.FirstRanker.com⁰⁷

 $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

- (b) (i) Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be vectors in \mathbb{R}^2 . Verify that the weighted **04** Euclidean inner product $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.
 - (ii) Let R^4 have the Euclidean inner product. Find the cosine of the angle θ **03** between the vectors u = (4, 3, 1, -2) and v = (-2, 1, 2, 3).
- Q.5 (a) (i) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2, 1)$ and $v_2 = (1, 3)$ and let 07 $T: R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$. Find the formula for $T(x_1, x_2)$. Using it, find T(2, -3).

(b) Let
$$T_A: R^6 \to R^4$$
 be multiplication by $A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$. **07**

Find the rank and nullity of T_A .

Q.6 (a) (i) Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point **03** P(2,1,3) in the direction the vector $\overline{a} = \hat{i} - 2\hat{k}$.

(ii)Obtain the reduced row echelon form of the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3 \end{bmatrix}$$

- (b) (i) Find the gradient of $f(x, y, z) = 2z^3 3(x^2 + y^2)z + \tan^{-1}(xz)$ at (1, 1, 1). (ii) Find the curl \overline{F} at the point (2, 0, 3) where $\overline{F} = ze^{2xy} \hat{i} + 2xy \cos y \hat{j} + (x + 2y) \hat{k}$. **03**
- $F = ze^{2xy} \hat{i} + 2xy \cos y \hat{j} + (x+2y)\hat{k} .$ Q.7 (a) (i) Prove that $\overline{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)\hat{j} + 3xz^2\hat{k}$ is irrotational and find 05 its scalar potential. (ii) State Divergence theorem 02
 - (ii) State Divergence theorem.
 - (b) State Green's theorem and using it, evaluate

$$\int (3x^2 - 8y^2)dx + (4y - 6xy)dy$$

where C is the boundary of the region bounded by $y^2 = x$ and $y = x^2$.

04

07