FirstRanker.com Fiest No.ker's choice GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI(NEW) – EXAMINATION – SUMMER 2019

2161401 Date:10/05/2019

Subject Code:2161401

Date: 10/05/2019

Subject Name:Food Process Equipment Design Time:10:30 AM TO 01:00 PM

Total Marks: 70

03

03

03

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- **Q.1** (a) Draw the diagram of plate with all notations.
 - (b) List out different material handling equipments. Discuss the working of any one of them. 04
 - (c) What is power number? Develop its equation and discuss its significance in the process 07 of agitation.
- Q.2 (a) Discuss the followings;
 - 1. Rising film evaporator with advantages and disadvantages
 - 2. Falling film evaporator with advantages and disadvantages
 - (b) When two fluids of the heat exchanger are separated by a plane wall, then derive the following equation. 04

$$U = \frac{1}{\frac{1}{h_i} + \frac{\delta}{k} + \frac{1}{h_o}}$$

(c) Derive the equation of effectiveness for parallel flow. 07 OR

(c) Why counter flow arrangement is more effective than parallel flow? Prove that 07

$$T_{h2} - T_{c1} = (T_{h1} - T_{c2}) e^{-UA} \left(\frac{1}{C_c} + \frac{1}{C_h} \right)$$

- Q.3 (a) What do you understand by factor of safety? Explain with example?
 - (b) Ambient air (dry bulb 27°C and wet bulb 18 °C) is heated to 70°C and fed in to the drying chamber of LSU dryer to dry parboiled paddy. If the air coming out of the dryer has temperature of 54°C and its wet bulb temperature is 37°C. Evaluate the LSU dryer performance? How it can be improved.
 - (c) Discuss possible material hazards in fruits and vegetable processing industry. Suggest 07 precautions should be taken to overcome the same.

OR

Q.3	(a)	Differentiate between AMTD and LMTD. Give the limitations of AMTD	03

- (b) What are factors affecting overall heat transfer coefficient?
- (c) A solution containing 5% solute by weight is to be concentrated to 15% at the rate of 2000 kg/hr. The feed solution is introduced in the evaporator at 40° C and steam at

04

FirstRanker.com Firstrandor Sphelice boils in the www.mrster.ahker.com evaporator. The overall heat transfer is 1220.63 kCal/m² °C.

Q.4	(a)	What are different subsidiary loads considered while designing pressure vessels? What is their influence in Indian condition?	03
	(b)	Discuss turbine agitator and what are its dimensional limitations?	04
	(c)	What are the different types of an agitator used in the food industry? Which type of agitator you will recommend for the bakery kneading purpose and why?	07
Q.4	(a)	Sketch different types of pressure vessel heads used for low pressure.	03
	(b)	Why boiling point elevation is? Describe the Duhring lines with help of diagram.	04
	(c)	In an open heart surgery under hypothermic conditions, the patient's blood is cooled before the surgery and rewarmed afterwards. The task is accomplished by a concentric tube counter flow heat exchanger of length 500mm with a thin walled inner tube of 60mm diameter. The blood entering the heat exchanger at 20 ^o C and 0.05 kg/s is warmed by water at 60 ^o C and 0.12 kg/s. Determine the temperature of blood at exit from the heat exchanger and the heat flow rate. Assume the following data; C _p of blood = 3500 J/KgK, C _p of water = 4186 J/KgK, U ₀ = 475 W/m ² K	07
Q.5	(a)	Discuss the followings1. Temperature profile for crossed flow (mixed type)2. Steam economy	03
	(b)	Discuss U and Z arrangement of Plate heat exchanger with diagram.	04
	(c)	Derive the energy balance equation for single effect evaporators. $m_f + H_f + m_s + H_{vs} = m_v H_{v1} + m_p H_{p1} + m_s H_{cs}$	07
Q.5	(a)	Describe Heat Capacity ratio, Steam economy and Fouling factor.	03
	(b)	Calculate the safe stress for stainless steel operated at 106°C with randomly checked butt joint and safety factor of 1.8. The material has allowable stress at 25, 70 and 120°C as 200, 142 and 106 N/mm ² respectively.	04

A steel pipe of 25mm of internal diameter and 30mm outer diameter is carrying a steam (c) 07 at 121° C. The convective heat transfer coefficient due to steam flow is 5000 w/m²K. The steel pipe has a glass wool insulation of 10mm thickness on the outer side. The near stagnant air is at 30°C on the outer side insulation provides a heat transfer coefficient of 10W/m²K. The thermal conductivity of steel and insulation are 43 and 0.031 W/mk respectively. Calculate the overall heat transfer resistance based on inside surface area of pipe at every meter length.