Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
$\left.\begin{array}{lll}\text { Q. } 1 & \text { (a) } & \text { How many bytes are used for } 1 \mathrm{MB} \text { requirement? } \\ & \text { A raster system has resolution } 1024 \times 1024 \text {. Compute the size of frame } & \mathbf{0 3} \\ & \text { buffer (in Megabytes) to store } 12 \text { bits per pixel. If a refresh rate of } 60 \mathrm{~Hz}\end{array}\right)$
Q. 2 (a) The end points of line are $\mathrm{P}_{1}(1,6,8)$ and $\mathrm{P}_{2}(-5,8,-2)$. Determine (i) Parametric equation of line (ii) Tangent vector of line (iii) Length of line
(b) Differentiate between analytic and synthetic curves. Explain various types of continuity used in synthetic curves.
(c) The end points of cubic spline curve are $P_{0}(1,2)$ and $P_{1}(7,1)$. The tangent vector for end P_{0} is given by line joining P_{0} and point $P_{2}(-2,1)$. The tangent vector for end P_{1} is given by line joining $P_{3}(9,-2)$ and point P_{1}.. Determine the parametric equation of Hermite's cubic spline curve Compute points on curve at $u=0.2,0.5$ and 0.8 .

OR

(c) Derive equation of Bezier's curve with 5 control points. State the order of the curve generated by these control points. What do you mean by 'Convex hull' property?
Q. 3 (a) Write full form of followings:
(i) OLED
(ii) LCD (iii) IGES
(b) What do you mean by "Ortho" in Orthographic projection? Derive expression of top view of an orthographic projection.
(c) Derive the equations of linear shape functions. Draw a neat sketch of both shape functions. What do you mean by 'Iso-parametric formulations' of the problems?

OR

Q. 3 (a) Differentiate between Hermite's cubic spline and Bezier's Curve. 03
(b) Explain perspective projection with neat sketch. 04
(c) Derive the equation of quadratic shape functions N_{1}, N_{2} and N_{3}. Draw a $\mathbf{0 7}$ neat sketch of all shape functions.
Q. 4 (a) State any three methods used to solve structure problems using FEM. 03 Write various applications areas of FEM.
(b) Explain concept of plane stress and plane strain with examples. $\mathbf{0 4}$
(c) Write element connectivity table and formulate the global stiffness matrix. in figure 1 .
www|firstRanker.com

Figure 1
OR
Q. 4 (a) What is 'Discretization'? Mention the precautions required during discretization process.
(b) Evaluate the shape functions $\mathrm{N} 1, \mathrm{~N} 2$ and N 3 at the interior point $\mathrm{P}(3.85,4.8)$ for constant strain triangular element. The coordinates of CST are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(1.5,2),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(7,3.5)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(4,7)$ respectively for nodes 1,2 and 3 .
(c) Consider a bar as shown in figure 2 . An axial load of 200 KN is applied at point P. Take $A_{1}=2400 \mathrm{~mm}^{2}, E_{1}=70 \mathrm{GPa}, \mathrm{A}_{2}=600 \mathrm{~mm}^{2}$ and $\mathrm{E}_{2}=200 \mathrm{GPa}$. Calculate the following (i) The nodal displacement (ii) Stresses in each element (iii) Reactions at supports

Figure 2
Q. 5 (a) Write matrices for 2D-translation, rotation about Y-axis and scaling for object in 3D space using homogeneous coordinates.
(b) Differentiate between geometry and topology. Write any four properties of solid models.
(c) A triangle ABC is represented as $\mathrm{A}(12,10), \mathrm{B}(20,15)$ and $\mathrm{C}(30,30)$. If it is mirrored about a line $y=-10$, determine the new coordinates of the triangle.

OR

Q. 5 (a) State various surface entities used for surface modelling. Explain surface of revolution with at least two examples.
(b) What is Constructive Solid Geometry representation approach? Explain04 with suitable example.
(c) Explain window to view port transformations.

