

GUJARAT TECHNOLOGICAL UNIVERSITY

Total Marks: 70

BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019 Subject Code:2163203 Date:14/05/2019

Subject Name: Engineering Electromagnetics And Wave Propagation

Time:10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Explain cross product. Explain spherical coordinate systems.	03 04
	(c)	(i) Transform the vector $\mathbf{B} = y\mathbf{a}x - x\mathbf{a}y + z\mathbf{a}z$ into cylindrical coordinates. (ii) Transform vector field $\mathbf{G} = (xz/y)\mathbf{a}x$ into spherical components and variables.	07
Q.2	(a)	State Coulomb's law.	03
	(b)	Find electric field intensity due to infinite line with uniform line charge density pl which lies on the z-axis.	04
	(c)	Given the field D = 6 $\rho \sin (\phi / 2) a\rho + 1.5 \rho \cos (\phi / 2) a\phi C/m2$. Evaluate both sides of the divergence theorem for the region bounded by $\rho = 2$, $0 < \phi < 180^{\circ}$, $0 < z < 5$.	07
		OR	
	(c)	Find the total charge inside each of the volumes indicated.	07
		(a) $\rho v = 10 \mathbb{Z}^2 e^{-0.1x} \sin \pi y$, $-1 < x < 2$, $0 < y < 1, 3 < z < 3.6$.	
		(b) $\rho v = 4xy \mathbb{Z}^2$, $0 < \rho < 2$, $0 < \varphi < \pi/2$, $0 < z < 3$.	
0.3	(a)	What do you mean by equipotential surface? Derive the expression of	03
Z	(4)	potential gradient.	00
	(b)	Derive the expression of following capacitor: 1) coaxial 2) Spherical.	04
	(c)	Write short note on magnetic boundary conditions.	07
		OR	
Q.3	(a)	Explain electric dipole.	03
	(b)	Write short note on boundary condition for perfect dielectric.	04
0.4	(c)	Prove that $\Delta .D = \rho v$	07
Q.4	(a) (b)	State and explain State's theorem	03
	(D) (c)	State and explain Stoke S theorem. An electric field is expressed in rectangular coordinates by $\mathbf{F} = 6x^2 \mathbf{e} \mathbf{x} + 6y \mathbf{e} \mathbf{x} + 4 \mathbf{e} \mathbf{x}$	04
	(t)	N for points M (2, 6, -1) & N (-3, -3, 2). Determine potential a) V_{MN}	07
		b) V_N if $V = 2$ at P(1, 2, -4)	
		OR	
Q.4	(a)	Explain ampere's circuital law.	03
	(b)	Let $V = 2xy^2 z^3 + 3 \ln (x^2 + 2y^2 + 3z^2)$ V in free space. Evaluate each of the following quantities at $P(2, 2, -1)$, $Q(2, -1)$ by $ V $ and $Q(2, -1)$.	04
	(c)	Final Point and integral form of Maxwell's Equations	07
05	(\mathbf{c})	Define skin affast	07
Q.5	(a) (b)	Define Skill effect. Derive Poission's and Lanlace's equation	U3 04
	(U) (a)	Verify Stoke's theorem for the field $\mathbf{U} = 6xy_0 \mathbf{v} = 2y_0^2 \mathbf{v}$ and the rooten cular	04
	(C)	path around the region $2 \le x \le 5$, $-1 \le y \le 1$ and $z = 0$. Let the positive direction of ds be az .	U/

www.FirstRanker.com OR

03

04

- Q.5 (a) Explain faraday's law of EM induction .
 - (b) Explain Wave motion in free space.
 - (c) State and prove Poynting theorem relating to the flow of energy at a point in space in an electromagnetic field.07

www.firstRanker.com