Subject Name:Engineering Electromagnetics And Wave Propagation Time:10:30 AM TO 01:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

| Q. 1 | (a) Explain cross product. | $\mathbf{0 3}$ |
| :--- | :--- | :--- | :--- |
| | (b) Explain spherical coordinate systems. | $\mathbf{0 4}$ |
| (c) | (i) Transform the vector $\mathbf{B}=y \mathbf{a} x-x \mathbf{a} y+z \mathbf{a}$ into cylindrical coordinates. | $\mathbf{0 7}$ |
| | (ii) Transform vector field $\mathbf{G}=(x z y) \mathbf{a} x$ into spherical components and | |
| | variables. | |

Q. 2 (a) State Coulomb's law.
(b) Find electric field intensity due to infinite line with uniform line charge 04 density $\rho \mathrm{l}$ which lies on the z -axis.

(c) Given the field $\mathrm{D}=6 \rho \sin (\varphi / 2)$ a $\rho+1.5 \rho \cos (\varphi / 2) \mathrm{a} \varphi \mathrm{C} / \mathrm{m} 2$. Evaluate both
sides of the divergence theorem for the region bounded by $\rho=2,0<\varphi<180^{\circ}$,
$0<z<5$.

OR

(c) Find the total charge inside each of the volumes indicated.
(a) $\rho v=10 \mathbf{Z}^{2} \mathrm{e}^{-0.1 \mathrm{x}} \sin \pi \mathrm{y},-1<\mathrm{x}<2,0<\mathrm{y}<1,3<\mathrm{z}<3.6$.
(b) $\rho v=4 x y \mathbf{Z}^{2}, 0<\rho<2,0<\varphi<\pi / 2,0<Z<3$.
(c) $\rho v=3 л \cos ^{2} \theta \cos ^{2} \varphi /\left[2 r^{2}\left(r^{2}+1\right)\right]$; Oniverse.
Q. 3 (a) What do you mean by equipotential surface? Derive the expression of 03 potential gradient.
(b) Derive the expression of following capacitor: 1) coaxial 2) Spherical. $\mathbf{0 4}$
(c) Write short note on magnetic boundary conditions .

OR

Q. 3 (a) Explain electric dipole. 03
(b) Write short note on boundary condition for perfect dielectric. $\mathbf{0 4}$
(c) Prove that $\Delta . \mathrm{D} \geqslant \rho \mathrm{v}^{\circ} \quad 07$
Q. 4 (a) What are the characteristics of good conductor? 03
(b) State and explain Stoke's theorem. 04
(c) An electric field is expressed in rectangular coordinates by $\mathbf{E}=6 x^{2} \mathbf{a x}+6 y$ ay $+4 \mathbf{a z} \quad \mathbf{0 7}$ V / m for points $\mathrm{M}(2,6,-1) \& \mathrm{~N}(-3,-3,2)$. Determine potential a) V_{MN}
b) V_{N} if $\mathrm{V}=2$ at $\mathrm{P}(1,2,-4)$

OR

Q. 4 (a) Explain ampere's circuital law. 03
(b) Let $V=2 x y^{2} z^{3}+3 \ln \left(x^{2}+2 y^{2}+3 z^{2}\right) \mathrm{V}$ in free space. Evaluate each of the
following quantities at $P(3,2,-1)$: a) V b $)|V|$ and c) E.
(c) Explain Point and integral form of Maxwell's Equations . $\mathbf{0 7}$
Q. 5 (a) Define skin effect. 03
(b) Derive Poission's and Laplace's equation. 04
(c) Verify Stoke's theorem for the field $\mathbf{H}=6 x y \mathbf{a x}-3 y^{2} \mathbf{a y}$ and the rectangular path around the region $2 \leq x \leq 5,-1 \leq y \leq 1$ and $z=0$. Let the positive direction of ds be az.
Q. 5 (a) Explain faraday's law of EM induction .
(b) Explain Wave motion in free space .
(c) State and prove Poynting theorem relating to the flow of energy at a point in space in an electromagnetic field.

