

www.FirstRanker.com Enrolled PrestRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(OLD) - EXAMINATION - SUMMER 2019			
Su	bject	Code:160906 Date:16/05/2019	
Su	bject	Name: Theory Of Electromagnetics	
Tiı	me:1	0:30 AM TO 01:00 PM Total Marks: 70	
Inst	tructio		
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	٥.	rigures to the right indicate run marks.	
Q.1	(a) (b)	What is dot product and cross product? Explain its significance and applications. A perpendicular vector field $\overline{F} = r^2 cos^2 \emptyset \overline{a_r} + z sin \emptyset \overline{a_\emptyset}$ is in cylindrical system. Find the flux emanating due to this field from the closed surface of the cylinder $0 \le z \le 1$, $z = 4$, verify the divergence theorem.	07 07
Q.2	(a)	Define surface charge density. Drive an expression for electric field intensity due to a sheet of charge with uniform surface charge density ρ_s c/m^2 on an infinite plane.	07
	(b)	Show that the divergence of flux density due to point charge and uniform line charge is zero.	07
		OR	
	(b)	If a sphere of radius 'a' has a charge density $\rho_v = kr^3$ then find \overline{D} and ∇ . \overline{D} as a function of radius r and sketch the result. Assume k constant.	07
Q.3	(a)	Establish relation between \overline{E} and \overline{V} . Proof that gradient of a scalar is a vector.	07
	(b)	If $V = x - y + xy + 2z$ V, find \bar{E} at $(1, 2, 3)$ and the energy stored in a cube of	07
		side 2m centered at the origin.	
		OR	
Q.3	(a)	What is the principle of Continuity equation? Drive an expression for integral and differential form of Continuity equation of current.	07
	(b)	Write a short note on "Electrostatic boundary conditions between two perfect dielectrics".	07
Q.4	(a)	The region between two concentric right circular cylinders contains a uniform	07
~ ··	(4)	charge density ρ . Solve the Poisson's equation for the potential in the region.	0.
	(b)	It is known that $V = XY$ is a solution of Laplace's equation where X is function	07
		of x and Y is function of y alone. Determine which function of the following	
		function are also solutions of Laplace's equation.	
		(i) $V = 100 XY$ (ii) $V = 100XY + 2x$ (iii) $V = X + 3Y$	
		(iv) $V = 2XY + Y^2 - X^2$ (v) $V = (XY)^2$.	
		OR	
Q.4	(a)	State and Explain Biot Savart law. How Biot-Savart law can be applied to the	07
	(b)	distributed sources. If a perpendicular field is given by	07
	(b)	If a perpendicular field is given by $\overline{E} = (x + 2x + 3x)\overline{3x} + (bx + 2x + 3x)\overline{3x} + (bx + 2x + 2x)\overline{3x}$	U/
		$\overline{F} = (x + 2y + az)\overline{a_x} + (bx - 3y - z)\overline{a_y} + (4x + cy + 2z)\overline{a_z}$ then find the constant a, b and c such that the field is irrotational.	
Q.5	(a)	Drive an expression for the inductance of	07
	(I-)	Solenoid (ii) Toroid (iii) Co-axial Cable.	07
	(b)	A charge of $Q = 5 \times 10^{-18} c$ is moving, through the uniform magnetic field $\bar{B} = 0.4 \bar{a} + 0.2 \bar{a} = 0.1 \bar{a}$. The with a relacity	07
		$-0.4\overline{a_x} + 0.2\overline{a_y} - 0.1\overline{a_z}$. T with a velocity	
		$V = (2\overline{a_x} - 3\overline{a_y} + 6\overline{a_z})10^5 m/s$ at $t = 0$.	
		1. What electric field is present at $t = 0$, if the net force on the electron is zero?	

FirstRanker.com

Firstranker in the electric field intensity in stranker. Eo direction and www.firstRahker.com

OR

- (a) State Maxwell's equations for static field. Write the expression for integrated and **07 Q.5** derivative form of Maxwell's equation derived from faraday's law and Ampere's circuit law for static field.
 - (b) A point charge of 25 nC located in free space at P (2, -3, 5) and a perfectly **07** conducting plane at z = 2.
 - Find (i) V at (3, 2, 4) (ii) \overline{E} at (3, 2, 4) (iii) ρ_s at (3, 2, 2) use method of image.

MMM.FirstRanker.com