FirstRanker.com Firstranker's choice

www.FirstRanker.com

Enrolment.PirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019 Date:14/05/2019

Subject Code:2170102

Subject Name: Theory of Heat Transfer

Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 What are the modes of Heat Transfer? Also mention their governing 03 (a) laws. Differentiate Conduction & Convection heat transfer. 04 **(b)** Derive general heat conduction equation in Cartesian coordinate 07 (c) system. Q.2 **(a)** Differentiate Natural & Forced Convection. 03 Compare Electrical Analogy & Thermal Analogy for Plane Wall in 04 **(b)** terms of Voltage and Temperature Difference respectively. 0.5cm thick glass (k= 0.78 W/mK) is exposed to air at 25° C (inner 07 (c) side) with convection heat transfer coefficient of 15 W/m²K. The outside air at -15° C with convection coefficient of 50 W/m²K. Determine:

(1) Temperature at inner and outer glass surfaces

(2) Heat transfer rate

OR

An outer wall of a house may be approximated by a 0.1m layer of 07 (c) common brick ($k= 0.7 \text{ W/m}^{\circ}\text{C}$) followed by a 0.04m layer of Gypsum plaster (k= 0.48 W/m°C). What thickness of loosely packed rockwool insulation ($k= 0.065 \text{ W/m}^{\circ}\text{C}$) should be added to reduce the heat loss or gain the wall by 80%?

What are the common applications of Extended surfaces? 03 **Q.3** (a) What are the different types of Extended surfaces? 04 **(b)**

(c) Derive an expression for heat flow through Rectangular fins. 07

OR

- Q.3 (a) What is (1) Prandtl Number (2) Grashoff Number & (3) Nusselt 03 Number?
 - Briefly discuss the concept of Hydrodynamic boundary layer. 04 **(b)**
 - Using Rayleigh's Method, Prove that when a sphere of diameter 'd', 07 (c) moves with a uniform velocity 'V', through a fluid of density ' ρ ' and dynamic viscosity ' μ ', the resistance 'R' will be

$$R = \rho d^2 V^2 \emptyset \left[\frac{\mu}{\rho V d} \right]$$

Define Emissive Power & Emissivity. 03 **Q.4 (a)** Define Absorptivity, Reflectivity & Trasnmissivity. 04 **(b)** A black body of total area 0.045 m² is completely enclosed in a space 07 (c) bounded by 5 cm thick walls. the walls have a surface area 0.5 m² and thermal conductivity 1.07 W/m°C. If the inner surface of the

FirstRanker.com Firstranker's religing wall is to be meintained at 21.5 °Cm and the outer walf sufficient ker.com is at 30°C, calculate the temperature of the black body. Neglect the difference between inner and outer surface areas of enveloping material.

OR

		Ŭ.	
Q.4	(a)	What is Overall heat transfer coefficient?	03
	(b)	Classify Heat Exchangers on the basis of its Mechanical Design.	04
	(c)	Derive an expression for Radiation between two non-black parallel surfaces.	07
Q.5	(a)	What do you mean by Heat Exchanger effectiveness?	03
	(b)	Differentiate Filmwise and Dropwise condensation.	04
	(c)	Derive LMTD Method.	07
		OR	
Q.5	(a)	Define Boiling, Condensation & Evaporation?	03
	(b)	Discuss Fouling/Scale deposition phenomenon in Heat Exchangers. Also state it's Disadvantages.	04
	(c)	Write a short note on Boiling Phenomenon.	07

www.FirstRanker.com