

www.FirstRanker.com

Enrolwww.PfrstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION – SUMMER 2019

Subject Code:2170501

Date:10/05/2019

Subject Name: Chemical Reaction Engineering - II

Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1	(a) (b)	 (a) Mention the procedure for tracer experiment for step response. (b) Estimate the vessel E curve equation. We suspect that the tanks-in series model reasonably represents the flow in the vessel. tin = 220 s and σ²in = 1000 s²; tout = 280 s and σ²in = 1000 s² 					
	(c)	Describe construction and working of fixed bed reactor with neat diagram.	07				
Q.2	(a)	Define: 1) Accelerator 2) Promoter 3) Inhibitor	03				
	(b)	Write brief about Micro fluid and Macro fluid.	04				
	(c)	Discuss segregation model with equation of conversion.	07				
	. /	OR					
	(\mathbf{c})	A sample of tracer is injected to get pulse response of closed vessel. The	07				

(c) A sample of tracer is injected to get pulse response of closed vessel. The effluent concentration is measured with respect to time as per following table.

Time,	0	1	2	3	4	5	6	7	8	9	10	12	14
min							Ċ	\mathbf{C}					
Conc,	0	1	1	5	8	10	8	6	4	3	2.2	1.5	0.6
gm/cc							*						

Estimate the E curve.

- Q.3 (a) Draw the sketches for Various ways of studying the flow pattern in vessels. 03
 - (b) Dilute A diffuses through a stagnant liquid film onto a plane surface consisting of B, reacts there to produce R which diffuses back into the mainstream. Derive the overall rate expression for the L/S reaction. A(l) + B(s) R(l).
 - The concentration of undesirable impurity in air (at 1 bar = 10^5 Pa) is to be 07 (c) reduced from 0.1% (or 100 Pa) to 0.02% (or 20 Pa) by absorption in pure water. Find the height of tower required for counter-current operations. Data For consistency let us use SI units throughout. For Packings $k_{Aga} = 0.32 \text{ mol/hr. m}^3$. Pa $k_{Al}a = 0.1 / hr$ The solubility of A in water is given by Henry's law constant $H_A = p_{Ai}/C_{Ai} = 12.5 \text{ Pa. m}^3/\text{mol}$ The flow rates per meter squared cross section of tower are $F_g/Acs = 1 \ x \ 10^5 \ mol/hr \ m^2$ $F_1/Acs = 7 X 10^5 \text{ mol/hr. m}^2$ The molar density of liquid under all conditions is $C_T = 56,000 \text{ mol/m}^3$

OR

04

Fi	rstF	Ranker. <mark>com</mark>	
Q.3rs	tranko (b)	Give significance of film conversion parameter. www.FirstRanker.c	om ⁰³ 04
	(c)	Discuss slurry reactor kinetics in series.	07
Q.4	(a)	Give examples for fluid fluid reactions.	03
	(b)	Discuss various non ideality that can occur in real reactor.	04
	(c)	For diffusion through chemical reaction control, derive relation for time required for unreacted core model for spherical particles of unchanging size; deduce relation for complete conversion also.	07
Q.4	(a)	Discuss the various types of tower and tank contactors for gas – liquid reaction.	03
	(b)	Explain Shrinking core model for spherical particles of unchanging size.	04
	(c)	Discuss various regimes for fluid fluid reaction for mass transfer and chemical reaction both having effect on the rate.	07
Q.5	(a)	Discuss the effect of Henry's constant value on the solubility of gas in liquid.	03
	(b)	From the first principle prove that for a back mix reactor (i) $E_{\theta} = e^{-\theta}$	04
	(c)	State and explain the steps in heterogeneous catalytic reaction with schematic diagram.	07
		OR	
Q.5	(a)	Discuss the effectiveness factor for solid catalyzed reaction.	03
	(b)	Explain the mechanism of solid catalysed reactions.	04
	(c)	Discuss various method for preparation of catalysts.	07
