

www.FirstRanker.com

www.FirstRanker.com

Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2170507 Date:18/05/2019

Subject Name: Computer Aided Process Synthesis

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Q.1 (a) What is pinch point? Explain its importance to design heat exchanger network using pinch design approach.
 - (b) Explain role of GCC in design of HEN. 04
 - (c) Explain the concept of threshold approach temperature and optimum approach temperature.
- Q.2 (a) Discuss heuristics for selection of separation methods.
 - (b) With suitable example explain the concept of breaking heat loops to reduce number of heat exchangers in HEN.
 - (c) Explain positioning of heat engines and heat pumps relative to pinch. 07

OR

(c) Design HEN, with minimum numbers of heat exchangers that satisfy $\Delta T_{min} = 10$ °C and hot utility MER targets of 300 kW, for three streams on hot side of the pinch.

	Tin	G	
Stream	(°C)	$T_{out}(^{\circ}C)$	FCp (kW/ $^{\circ}$ C)
C1	90	190	10
H1	200	100	5
H2	150	100	4

- Q.3 (a) Discuss vapour recompression with respect to heat integrated distillation column. 03
 - (b) Briefly describe design approaches toward safe chemical plants.

c) A mixture of four alcohols labeled as A, B, C, and D with flows in the feed of 07

1.05, 0.5, 1.2 and 7 mol/s respectively, for a total 9.75 mol/s and relative volatiles are 3.4, 2.5, 2 and 1 respectively. The information about marginal vapor flows estimated for non-key species are as under, Find the best distillation based separation sequence. Calculate number of possible sequence to separate four components and Draw direct and indirect sequences for same.

	A	В	C	D
A/B			2.53	3.59
B/C	3.11	ł	-	5.6
C/D	1.88	1.25		

OR

- **Q.3** (a) Explain separation sequencing for Solid-Fluid systems.
 - **(b)** Discuss the ethics of chemical engineer.

03 04

04

1

www.FirstRanker.com

www.FirstRanker.com

(c) Use the marginal vapor rate (MV) method to determine a sequence for the separation of alcohol mixture. Give rank to various sequences. Calculate no, of possible sequence for five components.

Sep.	MV	Sep.	MV	Sep.	MV	Sep.	MV	Sep.	MV
A/BCDE	12.3	ABC/DE	10.4	B/CDE	13.2	BCD/E	2.8	A/B	0
AB/CD	14	C/DE	6.7	B/CD	9.5	A/BC	2.6	B/C	0
AB/CDE	18.3	ABCD/E	4.3	BC/DE	8.2	A/BCD	9.1	C/D	0
ABC/D	3.6	CD/E	2.1	BC/D	1.3	AB/C	5.5	D/E	0

Q.4	(a)	Discuss the residue curve map.	03			
	(b)	Differentiate Flow shop plant and Job shop plant.	04			
	(c)	Explain the step wise procedure for construction of attainable region. OR	07			
Q.4	(a)	List the environmental factors to be considered in process design.	03			
	(b)	Explain the concept of reboiler flashing and vapor recompression in distillation configuration.	04			
	(c)	List out various methods to calculate MER targets. Explain any one in detail with suitable example.	07			
Q.5	(a)	Define with example: Cycle time, Make span, Flow shop plant.	03			
	(b)	Explain transshipment model for stream matching.	04			
	(c)	Explain algorithm for establishing distillation column pressure and condenser type.	07			
		OR				
Q.5	(a)	Discuss role of computers in Process Design.	03			
	(b)	Discuss on types of plants in multiple product batch plants.	04			
	(c)	Discuss reactor designs used for handling large adiabatic changes in temperature.				

2