

www.FirstRanker.com

Enrowww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY			
BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019			
Subject Code:2171916 Date:10/05/2019			
Sub	iect]	Name:Applied Mechanics of Solid	
Time:02:30 PM TO 05:00 PM Total Marks: 70			
Instructions:			
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	MARKS
Q.1	(a)	Explain Homogeneous deformation.	03
	(b)	Define the term "Shear Lag".	04
•	(c)	Explain Mohr's circle diagram for principal strains.	07
Q .2	(a)	What is Recapitulation? Explain in brief.	03
	(b)	Explain Yield and Failure criteria.	04
	(c)	Enlist theory of failures and explain any two.	07
	UR (a) The state of stress at a point is such that $\sigma = \sigma = \sigma = \sigma = \sigma = \sigma = \sigma$ 07		
	(C)	The state of stress at a point is such that $\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = \tau_{zx} = \rho$ Determine the principal stresses and their directions	07
03	(9)	Elaborate Octahedral Shearing stress theory in theory of failures	03
Q.J	(a) (h)	Elaborate Saint Venant's Principle	03
	(\mathbf{c})	Derive stress distribution using Airy's stress function in a simply	07
	(0)	supported beam subjected to pure bending.	07
		OR	
0.3	(a)	What is Circular Polariscope?	03
C	(b)	State basic assumptions for the theory of incremental constitutive relation	04
		for elastic – plastic material.	
	(c)	With the help of neat sketch, discuss behavior of Prandit-Reuss under	07
		plane stress $\sigma_{ij} = [\sigma_1, 0, \sigma_3]$.	
Q.4	(a)	Explain Hooke's law for elastic material.	03
-	(b)	Derive the equation of stress of thick pressure vessels only subjected to	04
		external pressure.	
	(c)	Explain Normality, Convexity and Uniqueness for an elastic solids.	07
		OR	
Q.4	(a)	Define Principle of super position with an example.	03
	(b)	Explain Von mises theory.	04
	(c)	Explain the Principle of virtual work and prove the relation for elastic	07
05	(a)	Solids.	02
Q.5	(a)	state term associated now rule benefits compared to non-associated now	03
	(h)	State the term Kinematic Hardening for an elasto-plastic material	04
	(\mathbf{c})	Explain Flow rule effective stress and effective strain for work hardening	07
		material.	07
		OR	
Q.5	(a)	Define: Deformation theory of plasticity.	03
•	(b)	Explain stress strain relation for work hardening material.	04
	(c)	State the term Bouschinger Effect for an elasto-plastic material.	07
		- *	

1