GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2130608
Date: 07/06/2019
Subject Name:Strength of Materials
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define: 03
(1)Hardness (2)co-efficient of friction (3)Shear Modulus
(b) Derive relation between S.F. and B.M. in a beam subjected to general loading
(c) A cantilever of length 2.5 m carries a UDL of $1.5 \mathrm{KN} / \mathrm{m}$ run over the whole length and a point load of 2 KN at a distance of 1.0 m from the free end. Calculate shear force and bending moments and plot the S.F. and B.M. diagrams.

Q. 2 (a) Explain different types of beam.

(b) Explain assumptions made in theory of pure bending
(c) A Hollow steel shaft 3 m long transmits a torque of 24 kNm . The total angle of twist is not to exceed 2.5° and the allowed shear stress is 90 MPa . Determine inside and outside of shaft $\mathrm{G}=85 \mathrm{GPa}$.

OR
(c) Draw the Shear Force and Bending Moment Diagram of beam shown in fig no. 1
Q. 3 (a) Explain assumptions in theory of pure torsion 03
(b) Write short note on (i) working stress (ii) load factor (iii) strain hardening

04
(c) A Steel bar ABCD of cross sectional area 500 mm 2 is acted upon by forces as shown fig no. 2 Neglecting effect of self-weight of the bars. Find change in length of bars AD. Take E=200GPa.

OR

Q. 3 (a) A uniform steel rod, 6 mm diameter (φ) and 0.5 m long, is subjected to a tensile force of 3 KN . Find the stress in the bar and its elongation. $\mathrm{E}=200$ GPa
(b) A simply supported beam of span 5 m has a cross-section $150 \mathrm{~mm} \times 250 \mathrm{~mm}$ and load with uniformly load over entire span, if the permissible stress is $10 \mathrm{~N} / \mathrm{mm} 2$, find (a) Maximum intensity of u.d.l it can carry.
(c) At a point in a strained material, stress pattern as shown in figure no. 3 was observed. Determine (i) magnitude of principal stresses and their location.(ii) Maximum shear stress and its orientation and (iii) stresses on plane AC ($\varnothing=56.31^{\circ}$)
Q. 4 (a) Explain Static \& Kinetic Friction03

(b) Explain MOHR'S circle of stress
(c) Prove with usual notation $\frac{F}{Y}=\frac{M}{I}=\frac{E}{R}$

OR
Q. 4 (a) Define
i) angle of friction ii) angle of repose iii) coefficient of friction
(b) Explain the law of static friction and law of dynamic friction.

Q. 5 (a) Enumerate various types of supports with neat symbolic sketches, showing possible reactions.
(b) Define
i) elastic body ii) plastic body iii) rigid body
(c) The T-shaped Cross-section of a beam shown in fig no. 4 is subject to vertical shear force of 100 kN . Calculate the shear stress at neutral axis and at the junction of web and flange.

OR

Q. 5 (a) Define section modulus and its importance in bending
(b) Explain the polar Modulus
(c) A uniform ladder of 4 m length rests against a vertical wall with which it make an angle of 45°, the coefficient of friction between the ladder and the wall is 0.4 and that between ladder and the floor is 0.5 . if a man, whose weight is one-half of that of the ladder ascends it, how will it be when the ladder slips?

Figure No. 1 for Q2(C) OR

Figure No. 2 Q3 (C)

Figure No. 3 Q3 (C) OR
Figure no. 4 for Q5(C)
