FirstRanker.com Seat No.: \_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019** 

Subject Code:2172602/2172607

Date:14/05/2019

**Total Marks: 70** 

**Subject Name:Polymer Kinetics** 

## Time:02:30 PM TO 05:00 PM

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

|     | 3.           | Figures to the right indicate full marks.                                                                 |     |
|-----|--------------|-----------------------------------------------------------------------------------------------------------|-----|
| Q.1 | (a)          | With suitable example, explain non elementary reaction.                                                   | 03  |
|     | <b>(b)</b>   | Compare collision theory with transition state theory.                                                    | 04  |
|     | (c)          | Discuss in detail about the factors affecting rate of reaction.                                           | 07  |
| Q.2 | (a)          | Give the classification of reactor based on it's operation.                                               | 03  |
|     | <b>(b</b> )  | Differentiate the molecularity and order of reaction.                                                     | 04  |
|     | (c)          | For gas phase decomposition of azomethane $(CH_3)_2N_2 \rightarrow C_2H_6 + N_2$ . The rate expression is | 07  |
|     |              | $r_{N2} = k_1 * C_{AZO} / 1 + k' * C_{AZO}$ . Devise mechanism to explain this rate.                      |     |
| Q.2 | (a)          | <b>UR</b> $\mathbf{O}(\mathbf{C}\mathbf{H},\mathbf{C}\mathbf{O}\mathbf{C}\mathbf{H})$                     | 07  |
|     | (0)          | $CO(CH_2)_0 \pm 2CO_0$ Following is data for the same:                                                    | 07  |
|     |              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                    |     |
|     |              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     |     |
|     |              | Find out the energy of activation for this reaction graphically.                                          |     |
|     |              |                                                                                                           |     |
| Q.3 | (a)          | Explain the term space time with suitable example. Also give it's unit.                                   | 03  |
|     | <b>(b)</b>   | Decomposition of gas is second order reaction. When initial concentration of gas is $5*10^{-4}$           | 04  |
|     |              | mole/liter it is 40% decomposed in 50 minutes. Calculate the value of rate constant.                      |     |
|     | (c)          | Derive the performance equation of ideal Continuous Stirred Tank Reactor (CSTR) for                       | 07  |
|     |              | first order variable volume system.                                                                       |     |
| 01  | (-)          | OR OR                                                                                                     | 0.7 |
| Q.3 | (a)<br>(b)   | Exploin the term space velocity with suitable example. Also write it's unit                               | 03  |
|     | (D)<br>(c)   | Derive the performance equation for ideal Plug Flow Reactor (PFR) for first order variable                | 04  |
|     | (C)          | volume system                                                                                             | 07  |
|     |              | volume system.                                                                                            |     |
| Q.4 | (a)          | Explain the term 'chain Modifier'.                                                                        | 03  |
|     | <b>(b)</b>   | Write a note on 'Ceiling Temperature'.                                                                    | 04  |
|     | (c)          | Discuss the kinetics of the cationic polymerization.                                                      | 07  |
|     |              | OR                                                                                                        |     |
| Q.4 | <b>(a)</b>   | Define the term 'chain transfer constantan'. List the factors affecting it.                               | 03  |
|     | <b>(b)</b>   | What do you mean by 'Mayo Equation'? Give it's application.                                               | 04  |
|     | ( <b>c</b> ) | Discuss the kinetics of anionic polymerization.                                                           | 07  |
| 0.5 | (a)          | Explain the term 'telomerization'.                                                                        | 03  |
| •   | <b>(b)</b>   | Which principles are adopted to achieve the narrow composition distribution in case of                    | 04  |
|     |              | copolymerization.                                                                                         |     |
|     | (c)          | Discuss the viscometry method to determine the molecular weight of polymer.                               | 07  |
|     |              |                                                                                                           |     |



www.FirstRanker.com

## OR

- Q.5 (a) What do you mean by kinetic chain length? Give it's relationship with degree of 03 polymerization.
  - (b) Which conclusions can be drawn regarding to kinetics of free radical polymerization? 04
  - (c) Discuss the ultracentrifugation method to determine the molecular weight of polymer. 07

\*\*\*\*\*\*

www.firstRanker.com