FirstRanker.com

www.FirstRanker.com

Enro WWW.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019 Date:18/05/2019

Subject Code:2173612

Subject Name: Fundamentals of Reaction Engineering Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

			MARKS
Q.1	(a)	Differentiate order and molecularity of a reaction.	03
	(b)	What are the different ways in which rate of reaction is defined for a homogeneous system?	04
	(c)	Explain about various theories predicting temperature dependency for rate of a chemical reaction.	07
Q.2	(a)	On doubling the concentration of reactant rate of reaction triples. Estimate order of reaction	03
	(b)	What is a constant volume batch reactor	04
	(c)	Describe differential method of data analysis. OR	07
	(c)	At 500 K the rate of a bimolecular react ion is ten times the rate at 400 K. Find the activation energy of this react ion using Arrhenius law and Collision theory.	07
Q.3	(a)	What is half life? Derive integrated form of rate expression for rate constant interms of half life time for first order reactions.	03
	(b)	Decomposition of a gas is of second order when initial concentration of gas is 5×10^{-4} mol/l, it is decomposed 40% in 50 min. Calculate the value of rate constant.	04
	(c)	Derive integrated form of rate expression for second order reaction of form $2A \rightarrow$ products, where total volume of reaction system varies linearly with conversion.	07
		OR	
Q.3	(a)	Differentiate Space time, holding time and residence time.	03
	(b)	In case of first order reaction, show that time required for 75% conversion is	04
		double the time required for 50% conversion.	
	(c)	Derive the performance equation of a steady state plug flow reactor.	07
Q.4	(a)	Mention the physical significance to Damkohler number.	03
-	(b)	Consider a gaseous feed $C_A = 100$, $C_{B0} = 200$ enters an isothermal flow reactor. For $X_A = 0.8$, find C_A , C_B and X_B	04
	(c)	A homogeneous second order liquid phase reaction is carried out in a mixed flow reactor. What will be conversion if this reactor is replaced by another mixed flow reactor having volume 6 times that of original reactor all else remain unchanged.	07
		OR	
Q.4	(a)	How selectivity is defined for systems batch and flow systems?	03
-	(b)	Discuss regarding qualitative product distribution for reactions in parallel.	04
	(c)	How performance of mixed flow reactors and plug flow reactors can be generalized for a n th order reactions?	07
Q.5	(a)	Define standard heat of reaction and combustion.	03
-	(b)	What is equilibrium conversion? How is it related to equilibrium constant and temperature for case of a first order reversible reaction?	04

FirstRanker.com Firstranker's For Peversible first order. FirstRanker.com 07 experiments in a batch reactor gives 58.1 % conversion in 1 min at 65 °C and 60 % conversion in 10.1 min at 25 °C. Find the rate expression for this reaction.

OR

- Q.5 Mention the essential properties of a catalyst and its classification. **(a)**
 - (b) Discuss the effect of modifiers and promoters on the activity of catalyst 04
 - Derive a rate law for decomposition of cumene from benzene and propylene, 07 (c) considering desorption of benzene as rate limiting from the surface of catalyst. *****

www.FirstRanker.com

03