GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2130901
Date: 04/06/2019
Subject Name:Circuits and Networks
Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Mention the relations between voltage and current for the following passive 03 elements. (1) Resistor (2) Capacitor.
(b) Define following terms: (a) Linear and Nonlinear Networks (b) Active and 04 Passive Networks(c) In the network of figure: 1, all sources are time invariant. Determine the07branch current in the 2 ohm resistor using Source Transformationmethod.
Q. 2 (a) State and explain Thevenin's theorem 03
(b) Explain characteristic of an ideal voltage source. 04
(c) Find the value of all currents and the current in the 10Ω resistor for the 07 network shown in figure 2 using mesh analysis.
OR
(c) In the network of figure 3, Determine the node voltages V1, V2, \& V3 using 07 node analysis.
Q. 3 (a) Determine the equivalent inductance at terminals A-B for the circuit shown 03 in figure: 4.
(b) Construct the exact dual of the network of figure5. 04
(c) Determine the value of I1 in the network of figure 6 using superposition 07 theorem.
OR
Q. 3 (a) State and explain maximum power transfer theorem. 03
(b) Explain and derive the step response to R-L series circuit using Laplace 04
Transformation method.
(c) Explain the procedure to obtain sinusoidal steady state response of a circuit. 07
Q. 4 (a) Write the initial conditions in the inductor and capacitor at $t=0+$ and $t=$ 03 ∞.
(b) Explain significance of poles and zeros in network functions. 04
(c) What is time constant? Explain time constant in terms of RL and RC circuit 07
OR
Q. 4 (a) Determine the Laplace transform of $(t)=e-a t \cos \omega t$. 03
(b) Define: (1) Oriented Graph (2)Tree (3) Tie-set (4) Incidence matrix 04
(c) The switch K is opened at $t=0$. Find out the values of ' v '; ' $d V / d t$ ' and 07 ${ }^{\prime} \mathrm{d}^{2} \mathrm{~V} / \mathrm{dt}^{2}$ ' just after switching (at time $\mathrm{t}=0+$) in the circuit shown in the following figure 7.
Q. 5 (a) State and explain initial value theorem. 03
(b) Derive the condition for the network to be reciprocal for ABCD-parameters. 04
(c) Find the Z parameters for the network shown in figure 8. 07
OR
Q. 5 (a) Briefly describe Millman's theorem. 03
(b) Determine y-parameters in terms of z-parameters. 04
 matrix (Bf) and fundamental cut-set matrix (Qf).

