FirstRanker.com Firstranker's choice

www.FirstRanker.com

Enro WWW.FirstRanker.com

Date: 21/05/2019

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII (OLD) EXAMINATION - SUMMER 2019

Subject Code: 171001

Subject Name: Microwave Engineering

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss advantages of microwave frequencies over lower frequencies; also 07 explain some areas of microwave application. 07
 - (b) Define the following terms
 - i) TEM wave, ii) TE wave, iii) TM wave, iv) HE wave, v) Characteristic Impedance, vi) Reflection coefficient, vii) Input impedance.
- (a) Explain the working principle of 'Magic Tee' in detail with S-matrix and neat Q.2 07 diagram.
 - 07 Determine the cut-off wavelength for the dominant mode in a rectangular **(b)** waveguide of breadth 10 cm. For a 2.5 GHz signal propagated in this waveguide in the dominant mode; Calculate the guide wavelength, the group and the phase velocities.

		OR	
	(b)	A two cavity Klystron amplifier has the following parameters.	07
		Beam voltage: $Vo = 900 V$, Beam current: $Io = 30mA$, Frequency: $f = 8 GHz$,	
		Gap spacing in either cavity: $d=1$ mm, Spacing between centers of cavities: L=	
		4 cm, Effective shunt impedance: $Rsh = 40k\Omega$. Determine,	
		i) The electron velocity, ii) The d.c. electron transit time, iii) The input voltage for maximum output voltage, iv) The voltage gain in decibels.	
Q.3	(a)	Explain functioning of four ports circulator with neat schematic diagram.	07
	(b)	Describe working principle of Helix Travelling Wave Tube with neat diagram.	07
		OR OR	
Q.3	(a)	Explain operational principle, V-I characteristics, construction, advantages and	07
		disadvantages of IMPATT diode with neat diagram.	
	(b)	Describe all the characteristics of Smith chart.	07
Q.4	(a)	Write a short note on Varactor diodes.	07
	(b)	Derive three expressions for maximum radar range, Rmax.	07
		OR	
Q.4	(a)	Draw and explain block diagram of 'Pulsed Radar System'.	07
	(b)	Prove that reflection $coefficient(\rho)$ is dependent on characteristic impedance	07
		(Z_0) and load impedance (Z_L) , also specify how their different values affects ρ .	
Q.5	(a)	Explain function of cylindrical magnetron with neat diagram.	07
	(b)	Describe MTI Radar functions with neat block diagram.	07
	()	OR	
Q.5	(a)	Explain various radar display methods with neat diagram.	07
	(b)	Derive an expression for characteristics impedance and quality factor of	07
		microwave strip lines.	
