

www.FirstRanker.com

Enrolment No._____ www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII(NEW) EXAMINATION – SUMMER 2019

BE - SEMESTER-VIII(NEW) EXAMINATION - SUMMER 2019			
Subject Code: 2180105 Date:13/05/2019			
Subject Name: High Speed Aerodynamics			
Time: 10:30 AM TO 01:00 PM Total Marks: '			s: 70
Instructions:			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)	Define Hypersonic flow in technical language.	03
	(b)	What is the difference between aerothermodynamics and	04
		aerodynamics? Explain construction of subsonic open type wind tunnel with neat	07
	(c)	sketch.	01
0.1	(-)	Prove C. Dein ² e for Norstanian theory	02
Q.2	(a)	Prove $C_p=2\sin^2\theta$ for Newtonian theory. Consider an infinitely thin flat plate at an angle of attack of 15 [°] in a	03 04
	(b)	mach 8 flow. Calculate lift to drag ratio.	04
	(c)	Explain Solid blockage and wake blockage.	07
		OR	
	(c)	Explain Centrifugal force corrections to Newtonian theory with neat	07
0.1		sketch.	0.2
Q.3	(a)	Define wind tunnel balances. Air is travelled over the object with 12 Mach flow and shock angle is	03 04
	(b)	$2^{0}(\beta)$ free stream pressure consider 101325 pa. Estimate downstream	04
	()	pressure (P_2).	
	(c)	Provid L/D = Cotri	07
		Prove $L/D = Cota$ OR	
Q.3	(a)	List out flow visualization techniques.	03
	(b)	What is the difference between supersonic and hypersonic wind tunnel? Explain θ-β-M diagram with neat sketch and prove	04 07
	(c)	"Hypersonic limit for a slender wedge, the wave angle is only 20%	07
	(0)	larger than the wedge angle".	
Q.4	(a)	What is Tangent cone method?	03
	(b)	Explain Shock expansion method.	04
	(c)	Explain Aerodynamic heating.	07
04	(a)	OR With neat sketch explain thin shock layer.	03
Q.4	(a) (b)	Define and explain entropy layer.	03 04
	(0)	An object immersed in airflow is described as follows	07
	(\mathbf{a})	Static pressure = 200 Kpa, Static Temperature = 293 K, Velocity of	
	(c)	flow is 250m/s, Estimate stagnation temperature and stagnation	
0 -		pressure.	0.2
Q.5	(a) (b)	Define "High temperature flow" characteristic for hypersonic flow.	03 04
	(b)	Explain Low density flow. Consider a flat plate at a 5^0 angle of attack in a mach 2.2 flow. Using	04 07
	(c)	prandtl meyer functions find out exit mach number. Take gama(Υ) = 1.4	
		OR	
Q.5	(a)	Explain flow over an airfoil case for hypersonic case.	03
ו•	(b)	Difference between supersonic flow and hypersonic flow.	03
	(c)	Why car is not fly at Subsoinc, Supersoinc and hypersonic speed?	07

www.FirstRanker.com
