FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJAKAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2019								
Subj	Subject Code: 2131004 Date: 11/06/2019							
Subj	ect]	Name:Digital Electronics						
Time Instru	Fime: 02:30 PM TO 05:00 PM Total Marks: 70							
	1.	Attempt all questions.						
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.						
Q.1	(a)	Represent following numbers in 8 Bit Binary representation: (i) $(126)_{10}$ (ii) $(79)_{10}$ (iii) $(-128)_{10}$	03					
	(b)	State and explain De Morgan's theorems with truth tables.	04					
	(c)	Do as directed.	07					
		i. Find 8 bit representation of $(-1)_{10} = (_)_2$						
		ii. Find $A+A'B =$						
		iii and can work as universal gates.						
		iv. Define term: Propagation Delay						
		v. By keeping one input HIGH, NAND gate can work as Inverter to second						
		input. $(1/F)$						
		vi. Convert (FFFF) ₁₆ =() ₁₀ .						
		VII. Convert $(125.625)_{10} = (\)_2$.						
0.2	(a)	Simply Boolean Function : F=A'B'C+A'BC+AB'.	03					
~	(u) (b)	Find the Boolean Equation for following circuit and simplified Boolean	04					
	()	equation.						
		X Queen l						
		z 0						
	(c)	Draw logic circuit of Full Adder and Full Subtractor with truth table.	07					
	. /	OR						
	(c)	Generate AND, OR, NOT, EXOR and EX-NOR gate using NAND as a	07					
		universal gate.						
Q.3	(a)	Obtain canonical Sum of Product form of following function: F=AB+ACD.	03					
-	(b)	Draw logic circuit of 2x4 Decoder.	04					

(c) Simply Boolean function for $F(W,X,Y,Z) = \Sigma$ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 07 14)

OR

Q.3	(a)	Explain working of Half Adder circuit with diagram.	03
	(b)	Draw logic circuit for 2-Bit Magnitude Comparator.	04
	(c)	Design 1-Bit Full Adder using 3x8 Decoder.	07

R	Firs	stR	anker.com	
	Figtra	How to generate 8x www.FirstBanker.com www.FirstBanker.com	5A3	
		(b)	Draw the circuit diagrams and Truth table of all the Flip flops (SR, D).	04
		(c)	Derive and draw logic circuit for BCD to Excess-3 Code converter.	07
			OR	
	Q.4	(a)	Draw logic diagram, graphical symbol and Characteristic table for clocked T	03
			flip-flop.	
		(b)	Explain 4-Bit serial in serial out shift register.	04
		(c)	Explain working of master-slave JK flip-flop with necessary logic diagram,	07
			state equation and state diagram.	
	Q.5	(a)	Give comparison of TTL and CMOS family.	03
		(b)	Draw and explain Ring counter.	04
		(c)	Design synchronous counter for sequence: $0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 0$ using T	07
			flip-flop.	
			OR	
	Q.5	(a)	What is race around condition in JK flip flop?	03
		(b)	Write short note on Programmable Logic Arrays.	04
		(c)	Explain the Fundamental Mode Model of Asynchronous State Machine with suitable example.	07

F

www.firstRanker.com