

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	B	E - SEMESTER–VIII(NEW) EXAMINATION – SUMMER 2019				
Subject Code: 2180503 Date: 17/05/2019						
Subi	ect Na	me: Process Modeling, Simulation & Optimization				
Time: 10:30 AM TO 01:00 PM Total Marks: 70						
Instru	ctions:					
	1. At	tempt all questions.				
	2. Ma	ake suitable assumptions wherever necessary.				
	3. Fig	gures to the right indicate full marks.				
01	(\mathbf{a})	List out the important model building store for a process	02			
Q.1	(a) (b)	List out the important model building steps for a process.	03			
	(U)	one in detail	04			
	(c)	Explain scope and hierarchy of optimization	07			
	(0)	Explain scope and meraleny of optimization.	07			
0.2	(a)	Compare lumped parameter model and distributed parameter model.	03			
	(b)	Write a note on the transport equations used for modeling.	04			
	(c)	A box with a square base and open top is to hold 1000 cm^3 . Find the	07			
		dimensions that require the least material (assume uniform thickness				
		of material) to construct the box.				
		OR				
	(c)	What are the applications of optimization in chemical process and	07			
		plants? Explain any one in detail with example.				
Q.3	(a)	Explain the meaning of following terms for optimization: feasible	03			
		solution, feasible region and optimum solution.				
	(b)	Explain any one tearing algorithm with all the necessary steps.	04			
	(c)	What is Hessian matrix? Write down its application in optimization.	07			
		Determine whether the following function is convex or concave:				
		$f(x) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 2x_2 + 15$				
0.2	(\mathbf{a})	Determine the optimum L/D ratio for a cylinder storage vessel. Also	02			
Q.3	(a)	list the necessary assumptions	03			
	(b)	Differentiate between steady state and dynamic simulation	04			
	(D) (C)	Minimize $f(x) = x^4 + x + 1$ using Newton's method for a starting point	07			
	(0)	of $x=0.6$ (Show 3 iterations, use four decimal point accuracy)	07			
0.4	(a)	Differentiate sequential modular approach and simultaneous modular	03			
ו•	(4)	approach.	ũ			
	(b)	A chemical process is represented by following set of equations:	04			
		$f_1(x_3, x_4) = 0;$				
		$f_2(x_5, x_2) = 0;$				
		$f_3(x_6) = 0;$				
		$f_4(x_6, x_1) = 0;$				
		$f_5(x_3, x_2) = 0;$				
		$f_6(x_4, x_5, x_1) = 0;$				
		Determine associated matrix and the diagraph of the process.				
	(c)	Develop the equations for the series of isothermal, variable holdup	07			
		CSTRs. List all the assumptions with their justifications.				
		OR				
Q.4	(a)	Explain the term partitioning and tearing with respect to process simulation.	03			

(b) Develop a signal flow graph for the diagraph given below: 04

www.FirstRanker.com

07

- (c) Explain: black-box model, white box model, gray model.
- Q.5 (a) Minimize the quadratic function $f(x) = x^2 x$ by Secant method. Use 03 the range of -3 to +3.
 - (b) Explain the application of optimization in fitting vapor-liquid 04 equilibrium data.
 - (c) Find the maximum of following function using Lagrangian 07 multipliers; $y = 10x_1^2 - 4x_1x_2 + 3x_2^2 + 5x_2x_3$ sunject to $x_1 + 2x_2 \le 3$ $x_2 - x_3 \ge 2$ $x_1 \ge 1$

OR

		ŬŔ.	
0.5	(a)	List out various region elimination methods for optimization. Also	03
	()	explain limitations of region elimination methods	
	(b)	Discuss the entimization of ring dismator	0.4
	(D)	Discuss the optimization of pipe diameter.	04
	(c)	Minimize following function using Simplex method;	07
		$Z = 3x_1 + 5x_2$ subject to	
		$r_{\star} < 4$	
		$n_1 \ge 1$, $n_m < 12$.	
		$2x_2 \leq 12;$	
		$3x_1 + 2x_2 \le 18;$	
		$x_1, x_2 \ge 0$	

		NO NO	
		×	
		C	
		N.	